Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus. . .
potentially be created [35]. As strain banks expand with
microbial isolates, efficient molecular biology techniques,
such as real-time PCR should be introduced to accelerate
natural product discovery [36]. The primers were designed
to amplify relatively short target fragments (~100 bp) to
effectively shorten the required assay time without sacrifi-
cing accuracy. Based on the principle of real-time PCR,
relatively short target fragments can also avoid instances
where the Ct value appears too late [30].
13. Zhao L, Kaiser M, Bode HB. Rhabdopeptide/Xenortide-like
peptides from Xenorhabdus innexi with terminal amines showing
potent antiprotozoal activity. Org Lett. 2018;20:5116–20.
14. Piel J. Approaches to capturing and designing biologically active
small molecules produced by uncultured microbes. Annu Rev
Microbiol. 2011;65:431–53.
15. Brachmann AO, Bode HB. Identification and bioanalysis of nat-
ural products from insect symbionts and pathogens. Adv Biochem
Eng Biot. 2013;135:123–55.
16. Masanori F, Satoshi B, Toshio T, Masaaki K, Yasuo O, Masahiro T,
et al. Structure-based gene targeting discovery of sphaerimicin, a
bacterial translocase I inhibitor. Angew Chem. 2013;125:11821–5.
17. Owen JG, Reddy BVB, Ternei MA, Charlop-Powers Z, Calle PY,
Kim JH, et al. Mapping gene clusters within arrayed metagenomic
libraries to expand the structural diversity of biomedically relevant
natural products. Proc Natl Acad Sci USA. 2013;110:11797–802.
18. Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth
M, Shi YM, et al. Natural product diversity associated with the
nematode symbionts Photorhabdus and Xenorhabdus. Nat
Microbiol. 2017;2:1676–85.
Acknowledgements This work are supported by Liaoning Province
Fund for Nature (No. 01032017001), Shenyang Agricultural Uni-
versity Postdoctoral Fund (No. 770215012) and Shenyang Agri-
cultural University Introducing Talent Fund (No. 880415016).
Compliance with ethical standards
Conflict of interest The authors declare that they have no conflict of
interest.
19. Walsh CT, Fischbach MA. Natural products version 2.0: con-
necting genes to molecules. J Am Chem Soc. 2010;132:2469–93.
20. Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome
mining for accelerated natural products discovery: is a renaissance
in the making? J Ind Microbiol Biotechnol. 2014;41:175–84.
21. Hindra Huang TT, Yang D, Rudolf JD, Xie PF, Xie G, et al. Strain
prioritization for natural product discovery by a high-throughput
real-time PCR method. J Nat Prod. 2014;77:2296–303.
22. Shi DS, An R, Zhang WB, Zhang GL, Yu ZG. Stilbene derivatives
from Photorhabdus temperata SN259 and their antifungal activities
against phytopathogenic fungi. J Agric Food Chem. 2017;65:60–65.
23. Bi YH, Gao CZ, Yu ZG. Rhabdopeptides from Xenorhabdus
budapestensis SN84 and their nematicidal activities against
Meloidogyne incognita. J Agric Food Chem. 2018;66:3833–9.
24. Lu XZ, Shi DS, Gao CZ, Tian XM, Bi YH, Yu ZG. Isolation and
identification of secondary metabolites from Xenorhabdus buda-
pestensis SN19. Nat Prod ResDev. 2016;6:828–32.
25. Yu ZG, Vodanovic-Jankovic S, Kron M, Shen B. New WS9326A
Congeners from Streptomyces sp. 9078 inhibiting Brugia malayi
asparaginyl-tRNA synthetase. Org Lett. 2012;14:4946–9.
26. Marfey P. Determination of d-amino acids. II. Use of a bifunc-
tional reagent, 1,5-Difluoro-2,4-dinitrobenzene. Carls Res Com-
mun. 1984;49:591–6.
27. Fujii K, Ikai Y, Oka H, Suzuki M, Harada K. A nonempirical
method using LC/MS for determination of the absolute config-
uration of constituent amino acids in a peptide: combination of
Marfey’s method with massspectrometry and its practical appli-
cation. Anal Chem. 1997;69:5146–51.
Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
References
1. Richards GR, Goodrich-Blair H. Masters of conquest and
pillage: Xenorhabdus nematophila global regulators control
transitions from virulence to nutrient acquisition. Cell Micro-
biol. 2009;11:1025–33.
2. Crawford JM, Kontnik R, Clardy J. Regulating alternative life-
styles in entomopathogenic bacteria. Curr Biol. 2010;20:69–74.
3. Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in
Xenorhabdus and Photorhabdus: two roads to the same destina-
tion. Mol Microbiol. 2007;64:260–8.
4. Shi YM, Bode HB. Chemical language and warfare of bacterial
natural products in bacteria–nematode–insect interactions. Nat
Prod Rep. 2018;35:309–35.
5. Gualtieri M, Aumelas A, Thaler J-O. Identification of a new
antimicrobial lysine-rich cyclolipopeptide family from Xenor-
habdus nematophila. J Antibiot. 2009;62:295–302.
6. Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler C,
et al. Determination of the absolute configuration of peptide nat-
ural products by using stable isotope labeling and mass spectro-
metry. Chem Eur J. 2012;18:2342–8.
7. Ohlendorf B, Simon S, Wiese J, Imhoff JF. Szentiamide, an N-
formylated cyclic depsipeptide from Xenorhabdus szentirmaii
DSM 16338T. Nat Prod Commun. 2011;6:1247–50.
8. Zhou Q, Dowling A, Heide H, Wöhnert J, Brandt U, Baum J, et al.
Xentrivalpeptides A–Q: depsipeptide diversification in Xenor-
habdus. J Nat Prod. 2012;75:1717–22.
9. Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF. Linear and
cyclic peptides from the entomopathogenic bacterium Xenorhab-
dus nematophilus. J Nat Prod. 2008;71:1074–7.
28. Fang XL, Li ZZ, Wang YH, Zhang X. In vitro and in vivo
antimicrobial activity of Xenorhabdus bovienii YL002 against
Phytophthora capsici and Botrytis cinerea. J Appl Microbiol.
2011;111:145–54.
29. Kronvall G. Single-strain regression analysis for determination of
interpretive breakpoints for cefoperazone disk diffusion suscept-
ibility testing. J Clin Microbiol. 1983;17:975–80.
30. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol
Educ. 2005;29:151–9.
10. Crawford JM, Portmann C, Kontnik R, Walsh CT, Clardy J.
NRPS substrate promiscuity diversifies the xenematides. Org Lett.
2011;13:5144–7.
31. Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA
sequences in eubacteria and application to finerpriting of bacterial
enomes. Nucleic Acids Res. 1991;19:6823–31.
11. Xiao Y, Meng FL, Qiu DW, Yang XF. Two novel antimicrobial
peptides purified from the symbiotic bacteria Xenorhabdus
budapestensis NMC-10. Peptides. 2012;35:253–60.
32. Baltz RH, Miao V, Wrigley SK. Natural products to drugs: dap-
tomycin and related lipopeptide antibiotics. ChemInform. 2006;
37:717–41.
12. Reimer D, Cowles KN, Proschak A, Nollmann FI, Dowling AJ,
Kaiser M, et al. Rhabdopeptides as insect-specific virulence factors
from entomopathogenic bacteria. ChemBioChem. 2013;14:1991–7.
33. Lawen A. Biosynthesis of cyclosporins and other natural pep-
tidyl prolyl cis/trans isomerase inhibitors. BBA-Gen Subj.
2015;1850:2111–20.