4
intramolecule charge transfer (ICT), excimerꢀmonomer
thymine-modified heptamethine cyanine probe 1. The syn-
thetic procedures of 1are given in Scheme 1, and its structural
identification was confirmed by H NMR, C NMR, and
ESI-MS spectroscopy (Supporting Information).
5
transfer, the excited-state intramolecular proton transfer
ESIPT), or energy transfer.
On the other hand, the self-association of dyes is a
6
,7
1
13
(
frequently encountered phenomenon, especially for many
classes of dyes when used in aqueous solution. The aggre-
gation effect of dyes also exerts a strong influence on their
spectroscopic characteristics, and these spectral changes
can be attributed to the aggregation of the dye molecules
in water to form dimers and higher order aggregates in the
a
Scheme 1. Synthetic Route of 1
“
J-” or “H-” type aggregation state. Though polymethine
cyanines are among the best known self-associating dyes in
aqueous solutions, and this self-association is clearly re-
8
flected by changes in the absorption spectra, chemosensor
studies based on this behavior have seldom been reported,
except for a colorimetric and ratiometric fluorescent che-
þ 9
mosensor for Ag . On the basis of these facts, we herein
report a new polymethine cyanine-based probe for the
efficient chromogenic and ratiometric fluorescent recogni-
2þ
tion of Hg as a new advance in this field.
Based on the fact that thymine (T) has proven to be one
2þ
of the most selective ligand binding to Hg in the form
10
a
2þ
Key: (a) CH OH, SOCl , reflux 3 h; (b) ethylenediamine, CH OH,
3
2
3
of TꢀHg ꢀT, we envisioned that this binding mode
reflux 3 h, N
CH OH, reflux 6 h, N
2
atmosphere; (c) 1,8-bis(dimethylamino)naphthalene,
atmosphere.
2þ
would contribute to fulfill the Hg -modulation of the
aggregation state of a heptamethine cyanine-based chro-
mophore in aqueous medium. Therefore, we introduced
a thymine group into the cyclohexene bridgehead of
the heptamethine cyanine chromophore, leading to a new
3
2
Next, the spectroscopic characteristics of probe 1 in
aqueous solution was studied. The absorption spectral
2þ
traces of 1 upon coordination with Hg in an optimized
buffer solution of 3,3-dimethylglutaric acidꢀNaOH(10mM
(
5) (a) Sasaki, D. Y.; Padill, B. E. Chem. Commun. 1998, 1581–1582.
b) Wang, Z.; Zhang, D. Q.; Zhu, D. B. Anal. Chim. Acta 2005, 549, 10–
3. (c) Kim, J. S.; Choi, M. G.; Song, K. C.; No, K. T.; Ahn, S.; Chang,
in MeOH/H O = 2/98, v/v) at pH 6.6 were monitored
2
(
1
first. As shown in Figure 1, the solution of 1 alone (2.0 ꢁ
S. K. Org. Lett. 2007, 9, 1129–1132. (d) Yang, M. H.; Thirupathi, P.; Lee,
K.-H. Org. Lett. 2011, 13, 5028–5031.
ꢀ5
10
M) exhibits an absorption maximum at 628 nm,
which is responsible for the blue color of the solution.
(
6) By ESIPT mechanism:Santra, M.; Roy, B.; Ahn, K. H. Org. Lett.
011, 13, 3422–3425.
7) (a) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128,
4474–14475. (b) Shang, G. Q.; Gao, X.; Chen, M. X.; Zheng, H.; Xu,
2
2þ
With increasing Hg concentrations, the absorbance at
628 nm decreased, while the absorbance at 510 nm in-
(
1
J. G. J. Fluoresc. 2008, 18, 1187–1192. (c) Zhang, X. L.; Xiao, Y.; Qian,
X. H. Angew. Chem., Int. Ed. 2008, 47, 8025–8029. (d) Suresh, M.;
Mishra, S.; Mishra, S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.;
Das, A. Org. Lett. 2009, 11, 2740–2743. (e) Atilgan, S.; Ozdemir, T.;
Akkaya, E. U. Org. Lett. 2010, 12, 4792–4795. (f) Liu, Q.; Peng, J. J.;
Sun, L. N.; Li, F. Y. ACS Nano 2011, 5, 8040–8048.
creased accordingly. This pronounced hypsochromic shift
of the maximum absorption wavelength can be ascribed to
the H-aggregation state of the cyanine dye resulted from
2þ 8
the coordination of Hg . Meanwhile, an isosbestic point
was clearly observed around 538 nm, indicating the con-
version of the free molecules into aggregation molecules.
In addition, such a large blue-shift of 118 nm in the
absorption behavior changes the color of the resultant
solution from blue into pink, allowing “naked-eye” detec-
tion (Figure S3, Supporting Information). Furthermore,
(
8) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera,
G. B. Chem. Rev. 2000, 100, 1973–2011.
9) Zheng, H.; Yan, M.; Fan, X. X.; Sun, D.; Yang, S. Y.; Yang, L. J.;
Li, J. D.; Jiang, Y. B. Chem. Commun. 2012, 48, 2243–2245.
10) (a) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–
302. (b) Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.;
(
(
4
Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami,
T.; Ono, A. J. Am. Chem. Soc. 2006, 128, 2172–2173. (c) Tanaka, Y.;
Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. J. Am. Chem.
Soc. 2007, 129, 244–245. (d) Bagno, A.; Saielli, G. J. Am. Chem. Soc.
the experiments of ratiometric absorbance (A510/A628
)
þ
response of 1 toward other metal ions, including Ag ,
2þ
2007, 129, 11360–11361. (f) Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angew.
2
þ
þ
2þ
2þ
3þ
2þ
2þ
2þ
þ
2þ
þ
2þ
3þ
3þ
Chem., Int. Ed. 2007, 46, 4093–4096. (g) Liu, J.; Lu, Y. Angew. Chem.,
Int. Ed. 2007, 46, 7587–7590. (h) Li, D.; Wieckowska, A.; Willner, I.
Angew. Chem., Int. Ed. 2008, 47, 3927–3931. (i) Xue, X.; Wang, F.; Liu,
X. J. Am. Chem. Soc. 2008, 130, 3244–3245. (j) Liu, C. W.; Hsieh, Y. T.;
Huang, C. C.; Lin, Z. H.; Chang, H. T. Chem. Commun. 2008, 2242–
Zn , Cd , Mn , Fe , Cu , Ni , Pb , Cr , Al ,
þ
2
Co , Na , Ba , Mg , Ca , and K , suggested the high
2
absorption selectivity to Hg (Figures S4 and S5, Sup-
porting Information).
We also noticed that the reaction of 1 with Hg pro-
duced obvious fluorescence emission changes (Figure 2).
2
1
244. (k) Che, Y. K.; Yang, X. M.; Zang, L. Chem. Commun. 2008, 1413–
415. (l) Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005–6007.
2þ
(m) Wang, H.; Wang, Y.; Jin, J.; Yang, R. Anal. Chem. 2008, 80, 9021–
9028. (n) Ye, B. C.; Yin, B. C. Angew. Chem., Int. Ed. 2008, 47, 8386–
A solution of 1 displayed two emission peaks, strong at
537 nm and weak at714 nm, whenexcited at 500 nm. When
8389. (o) He, S.; Li, D.; Zhu, C.; Song, S.; Wang, L.; Long, Y.; Fan, C.
Chem. Commun. 2008, 4885–4887. (p) Gao, X.; Xing, G.; Yang, Y.; Shi,
X.; Liu, R.; Chu, W.; Jing, L.; Zhao, F.; Ye, C.; Yuan, H.; Fang, X.;
Wang, C.; Zhao, Y. J. Am. Chem. Soc. 2008, 130, 9190–9191. (q) Ono,
A.; Torigoe, H.; Tanakac, Y.; Okamoto, I. Chem. Soc. Rev. 2011, 40,
2þ
Hg was added to the solution of 1, a distinct decrease in
the 714 nm emission and an increase in the fluorescence
at 537 nm were observed, with a clear isoemission point at
5855–5866.
Org. Lett., Vol. 14, No. 8, 2012
1987