Communication
ChemComm
2
3
4
5
E. L. Greer and Y. Shi, Nat. Rev. Genet., 2012, 13, 343–357.
W. P. Janzen, Chem. Biol., 2014, 21, 1162–1170.
F. Sams-Dodd, Drug Discovery Today, 2005, 10, 139–147.
(a) R. Hashimoto, V. Saloura and Y. Nakamura, Nat. Rev. Cancer,
6587–6599; (d) J. Kim and M. Movassaghi, Acc. Chem. Res., 2015, 48,
1159–1171.
20 For a review on G9a, see: (a) Y. Shinkai and M. Tachibana, Genes
Dev., 2011, 25, 781–788; (b) Original work for identification of G9a,
see: (c) M. Tachibana, K. Sugimoto, T. Fukushima and Y. Shinkai,
J. Biol. Chem., 2001, 276, 25309–25317.
2
015, 15, 110–124; (b) K. K. Bigger and S. S.-C. Li, Nat. Rev. Mol. Cell
Biol., 2015, 16, 5–17.
6
Y. Takemoto, A. Ito, H. Niwa, M. Okamura, T. Fujiwara, T. Hirano, 21 (a) M. Takahashi, Y. Takemoto, T. Shimazu, H. Kawasaki, M. Tachibana,
N. Handa, T. Umehara, T. Sonoda, K. Ogawa, M. Tariq, N. Nishino,
S. Dan, H. Kagechika, T. Yamori, S. Yokoyama and M. Yoshida,
J. Med. Chem., 2016, 59, 3650–3660.
P. V. Hornbeck, B. Zhang, B. Murray, J. M. Kornhauser, V. Latham
and E. Skrzypek, Nucleic Acids Res., 2015, 43, D512–D520.
Y. Shinkai, M. Takagi, K. Shin-ya, Y. Igarashi, A. Ito and M. Yoshida,
J. Antibiot., 2012, 65, 263–265; (b) S. Snigdha, G. A. Prieto, A. Petrosyan,
B. M. Loertscher, A. P. Dieskau, L. E. Overman and C. W. Cotman,
J. Neurosci., 2016, 36, 3611–3622; (c) E. Iwasa, Y. Hamashima and
M. Sodeoka, Isr. J. Chem., 2011, 3-4, 420–433.
7
8
(a) M. J. Niphakis and B. F. Cravatt, Annu. Rev. Biochem., 2014, 83, 22 (a) Y. Teng, K. Iuchi, E. Iwasa, S. Fujishiro, Y. Hamashima, K. Dodo
3
6
41–347; (b) U. Rix and G. Superti-Furga, Nat. Chem. Biol., 2009, 5,
16–624; (c) M. Schenone, V. Dancik, B. K. Wagner and P. A. Clemons,
Nat. Chem. Biol., 2013, 9, 232–240; (d) X. Chen, Y. K. Wong, J. Wang,
and M. Sodeoka, Bioorg. Med. Chem. Lett., 2010, 20, 5085–5088;
(b) C. R. Isham, J. D. Tibodeau, W. Jin, R. Xu, M. M. Timm and
K. C. Bible, Blood, 2007, 109, 2579–2588.
J. Zhang, Y.-M. Lee, H.-M. Shen, Q. Li and Z.-C. Hua, Proteomics, 2017, 23 (a) F. L. Cherblanc, K. L. Chapman, R. Brown and M. J. Fuchter, Nat.
1
7, 1600212.
Chem. Biol., 2013, 9, 136–137; (b) F. L. Cherblanc, K. L. Chapman,
J. Reid, A. J. Borg, S. Sundriyal, L. Alcazar-Fuoli, E. Bignell,
M. Demetriades, C. J. Schofield, P. A. DiMaggio, R. Brown and
M. J. Fuchter, J. Med. Chem., 2013, 56, 8616–8625.
9
K. E. Moore, S. M. Carlson, N. D. Camp, P. Cheung, R. G. James,
K. F. Chua, A. Wolf-Yadlin and O. Gozani, Mol. Cell, 2013, 50,
4
44–456.
1
1
0 B. D. Horning, R. M. Suciu, D. A. Ghdiri, O. A. Ulanovskaya, 24 A. M. Edwards, et al., Nat. Chem. Biol., 2015, 11, 536–541.
M. L. Matthews, K. M. Lum, K. M. Backus, S. J. Brown, H. Rosen 25 S. Fujishiro, K. Dodo, E. Iwasa, Y. Teng, Y. Sohtome, Y. Hamashima,
and B. F. Cravatt, J. Am. Chem. Soc., 2016, 138, 13335–13343.
1 Leading reports for the development of 1 and its application to
A. Ito, M. Yoshida and M. Sodeoka, Bioorg. Med. Chem. Lett., 2013,
23, 733–736.
methylome analysis: (a) I. R. Bothwell, K. Islam, Y. Chen, W. Zheng, 26 (a) K. C. Nicolaou, D. Gigu `e re, S. Totokotsopoulos and Y.-P. Sun,
G. Blum, H. Deng and M. Luo, J. Am. Chem. Soc., 2012, 134,
Angew. Chem., Int. Ed., 2012, 51, 728–732; (b) K. C. Nicolaou, M. Lu,
S. Totokotsopoulos, P. Heretsch, D. Gigu `e re, Y.-P. Sun, D. Sarlah,
T. H. Nguyen, I. C. Wolf, D. F. Smee, C. W. Day, S. Bopp and
E. A. Winzeler, J. Am. Chem. Soc., 2012, 134, 17320–17332.
1
3
4905–14912; (b) I. R. Bothwell and M. Luo, Org. Lett., 2014, 16,
056–3059; (c) S. Willnow, M. Martin, B. Luscher and E. Weinhold,
ChemBioChem, 2012, 13, 1167–1173; for a recent general review, see:
(
d) T. D. Huber, B. R. Johnson, J. Zhang and J. S. Thorson, Curr. 27 Overman and co-workers reported a similar synthetic sequence using
Opin. Biotechnol., 2016, 42, 189–197.
2 S. M. Carlson and O. Gozani, J. Mol. Biol., 2014, 426, 3350–3362.
3 R. Wang and M. Luo, Curr. Opin. Chem. Biol., 2013, 17, 729–737.
racemic pyrrolidines for syntheses of ETPs, see: M. Baumann,
A. P. Dieskau, B. M. Loertscher, M. C. Walton, S. Nam, J. Xie,
D. Horne and L. E. Overman, Chem. Sci., 2015, 6, 4451–4457.
1
1
1
4 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. 28 See the ESI†.
Chem., Int. Ed., 2002, 41, 2596–2599.
29 (a) M. Schapira and R. F. de Fritas, Med. Chem. Commun., 2014, 5,
1
5 (a) T. Shimazu, J. Barjau, Y. Sohtome, M. Sodeoka and Y. Shinkai, PLoS
One, 2014, 9, e105394; (b) T. Shimazu, T. Furuse, S. Balan, I. Yamada,
1779–1788; (b) Y. Yang and M. T. Bedford, Nat. Rev. Cancer, 2013, 13,
37–50.
S. Okuno, H. Iwanari, T. Suzuki, T. Hamakubo, N. Dohmae, 30 (a) A. Ostareck-Ledere, D. H. Ostareck, K. P. Ruckngael, A. Schierhorn,
T. Yoshikawa, S. Wakana and Y. Shinkai, Sci. Rep., 2018, 8, 1179.
6 P. A. Boriack-Sjodin and K. K. Swinger, Biochemistry, 2016, 55,
B. Moritz, S. Huttelmaier, N. Flach, L. Handoko and E. Wahle, J. Biol.
Chem., 2006, 281, 11115–11125; (b) Y.-Y. Chiou, W.-J. Lin, S.-L. Fu and C.-
H. Lin, Protein J., 2007, 26, 87–93; (c) Y. Chen, X. Zhou, N. Liu, C. Wang,
L. Zhang, W. Mo and G. Hu, FEBS Lett., 2008, 582, 1761–1765;
(d) J.-H. Yang, Y.-Y. Chiou, S.-L. Fu, I.-Y. Shih, T.-H. Weng, W.-J. Lin
and C.-H. Lin, Nucleic Acids Res., 2014, 42, 9908–9924.
1
1
1
1
1
557–1569.
7 D. Griner, T. Bonaldi, R. Eskeland, E. Roemer and A. Imhof, Nat.
Chem. Biol., 2005, 1, 143–145.
8 J. C. Black, C. V. Rechem and J. R. Whetstine, Mol. Cell, 2012, 48,
4
91–507.
31 syn-HyPA-ETP-2 (syn-5b) doesn’t meet criteria, which are defined by
SGC (Structural Genomics Consortium), of in vitro IC50 value,
enzyme selectivity and cellular activity. Further structural development
of ETPs to improve the potency, PKMT/PRMT selectivity and PRMT
isoform selectivity as well as mechanistic studies are ongoing.
9 (a) E. Iwasa, Y. Hamashima, S. Fujishiro, E. Higuchi, A. Ito, M. Yoshida
and M. Sodeoka, J. Am. Chem. Soc., 2010, 132, 4078–4079; (b) J. Kim and
M. Movassaghi, J. Am. Chem. Soc., 2010, 132, 14376–14378; (c) E. Iwasa,
Y. Hamashima, S. Fujishiro and M. Sodeoka, Tetrahedron, 2011, 67,
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018