ChemMedChem
10.1002/cmdc.202000911
FULL PAPER
Multinucleated osteoclasts were counted over 5 images from each
triplicate sample.
Downs, J. D. Eskra, M. D. Forman, E. M. Greer, R. Guzman, J. R.
Hardink, F. Janat, N. F. Keene, E. R. Laird, J. L. Liras, L. L. Lopresti-
Morrow, P. G. Mitchell, J. Pandit, D. Robertson, D. Sperger, M. L.
Vaughn-Bower, D. M. Waller, S. A. Yocum, Bioorg. Med. Chem. Lett.
Type II collagen assay
2
006, 16, 5822-5826; d) A. R. Johnson, A. G. Pavlovsky, D. F. Ortwine,
F. Prior, C.-F. Man, D. A. Bornemeier, C. A. Banotai, W. T. Mueller, P.
McConnell, C. Yan, V. Baragi, C. Lesch, W. H. Roark, M. Wilson, K.
Datta, R. Guzman, H.-K. Han, R. D. Dyer, J. Biol. Chem. 2007, 282,
To assess the potency of probes using a physiologically relevant substrate
we tested compounds in an assay utilizing type II collagen (Sigma-Aldrich,
St. Louis, MO, Cat# 234184). All experiments were performed in 384-well
white microtiter plates. The assay was initiated by dispensing 9 µL of 4 nM
MMP-13 in EAB. Two µL of test compounds in EAB were added and
incubated with the enzyme for 30 min. Reactions were initiated by addition
of 9 µL of 333 nM type II collagen in EAB. After 22 h of incubation at 37 °C,
the samples were resolved by electrophoresis on an 8% SDS-PAGE gel.
The gel was stained with Coomassie Blue and band intensities quantified
versus no-enzyme and untreated controls.
2
7781-27791; e) J. J. Li, J. Nahra, A. R. Johnson, A. Bunker, P.
O’Brien, W.-S. Yue, D. F. Ortwine, C.-F. Man, V. Baragi, K. Kilgore, R.
D. Dyer, H.-K. Han, J. Med. Chem. 2008, 51, 835-841; f) A. Heim-
Riether, S. J. Taylor, S. Liang, D. A. Gao, Z. Xiong, E. M. August, B. K.
Collins, B. T. Farmer, II, K. Haverty, M. Hill-Drzewi, H.-D. Junker, S. M.
Margarit, N. Moss, T. Neumann, J. R. Proudfoot, L. Smith Keenan, R.
Sekul, Q. Zhang, J. Li, N. A. Farrow, Bioorg. Med. Chem. Lett. 2009,
1
9, 5321-5324; g) D. A. Gao, Z. Xiong, A. Heim-Riether, L. Amodeo, E.
M. August, X. Cao, L. Ciccarelli, B. K. Collins, K. Harrington, K.
Haverty, M. Hill-Drzewi, X. Li, S. Liang, S. M. Margarit, N. Moss, N.
Nagaraja, J. Proudfoot, R. Roman, S. Schlyer, L. S. Keenan, S. Taylor,
B. Wellenzohn, D. Wiedenmayer, J. Li, N. A. Farrow, Bioorg. Med.
Chem. Lett. 2010, 20, 5039-5043; h) D. Piecha, J. Weik, H. Kheil, G.
Becher, A. Timmermann, A. Jaworski, M. Burger, M. W. Hofmann,
Inflamm. Res. 2010, 59, 379-389; i) A. Jüngel, C. Ospelt, M. Lesch, M.
Thiel, T. Sunyer, O. Schorr, B. A. Michel, R. E. Gay, C. Kolling, C.
Flory, S. Gay, M. Neidhart, Ann. Rheum. Dis. 2010, 69, 898-902; j) C.
Gege, B. Bao, H. Bluhm, J. Boer, B. M. Gallagher, B. Korniski, T. S.
Powers, C. Steeneck, A. G. Taveras, V. M. Baragi, J. Med. Chem.
Acknowledgements
This research was supported by NIH R01 grant CA239214 (GBF)
and an FAU Undergraduate Research Grant (GD). We
acknowledge Acubiosys Private Limited, Hyderabad, India, for
performing the kinetic solubility, metabolic stability, and Caco-2
permeability assays.
2
012, 55, 709-716; k) T. Fischer, R. Riedl, ChemMedChem 2013, 8,
Keywords: matrix metalloproteinase • matrix metalloproteinase
1
457-1461; l) H. Nara, K. Sato, T. Naito, H. Mototani, H. Oki, Y.
inhibitor • breast cancer • bone metastasis • osteoclastogenesis
Yamamoto, H. Kuno, T. Santou, N. Kanzaki, J. Terauchi, O. Uchikawa,
M. Kori, Bioorg. Med. Chem. 2014, 22, 5487-5505; m) H. Nara, K.
Sato, T. Naito, H. Mototani, H. Oki, Y. Yamamoto, H. Kuno, T. Santou,
N. Kanzaki, J. Terauchi, O. Uchikawa, M. Kori, J. Med. Chem. 2014,
57, 8886-8902; n) J. Lanz, R. Riedl, ChemMedChem 2015, 10, 451-
454; o) H. Nara, K. Sato, A. Kaieda, H. Oki, H. Kuno, T. Santou, N.
Kanzaki, J. Terauchi, O. Uchikawa, M. Kori, Bioorg. Med. Chem. 2016,
24, 6149-6165; p) P. G. Ruminski, M. Massa, J. Strohbach, C. E.
Hanau, M. Schmidt, J. A. Scholten, T. R. Fletcher, B. C. Hamper, J. N.
Carroll, H. S. Shieh, N. Caspers, B. Collins, M. Grapperhaus, K. E.
Palmquist, J. Collins, J. E. Baldus, J. Hitchcock, H. P. Kleine, M. D.
Rogers, J. McDonald, G. E. Munie, D. M. Messing, S. Portolan, L. O.
Whiteley, T. Sunyer, M. E. Schnute, J. Med. Chem. 2016, 59, 313-327;
q) X.-W. Xie, R.-Z. Wan, Z.-P. Liu, ChemMedChem 2017, 12, 1157-
1168; rT. Fischer, R. Riedl, ChemistryOpen 2017, 6, 192-195.
a) J. Y. Choi, R. Fuerst, A. M. Knapinska, A. Taylor, L. Smith, X. Cao,
P. J. Hart, G. B. Fields, W. R. Roush, J. Med. Chem. 2017, 60, 5816-
5825; b) R. Fuerst, J. Y. Choi, A. M. Knapinska, L. Smith, M. D.
Cameron, C. H. Ruiz, G. B. Fields, W. R. Roush, Bioorg. Med. Chem.
2018, 26, 4984-4995.
[
1]
E. Gobin, K. Bagwell, J. Wagner, D. Mysona, S. Sandirasegarane, N.
Smith, S. Bai, A. Sharma, R. Schleifer, J. X. She, BMC Cancer 2019,
1
9, 581.
[
[
[
[
2]
3]
4]
5]
J. M. P. Freije, T. Diez-Itza, M. Balbin, L. M. Sanchez, R. Blasco, J.
Tolivia, C. Lopez-Otin, J. Biol. Chem. 1994, 269, 16766-16773.
H.-J. Chang, M.-J. Yang, Y.-H. Yang, M.-F. Hou, E.-J. Hsueh, S.-R.
Lin, Oncol. Rep. 2009, 22, 1119-1127.
B. Zhang, X. Cao, Y. Liu, W. Cao, F. Zhang, S. Zhang, H. Li, L. Ning, L.
Fu, Y. Niu, R. Niu, B. Sun, X. Hao, BMC Cancer 2008, 8, 83.
a) S. Paget, Cancer Metastasis Rev. 1989, 8, 98-101; b) M. Tauro, C.
C. Lynch, Cancers 2018, 10, 185.
[
[
6]
7]
G. R. Mundy, Nat. Rev. Cancer 2002, 2, 584-593.
T. Ohshiba, C. Miyaura, M. Inada, A. Ito, Br. J. Cancer 2003, 88, 1318-
1
326.
[14]
[15]
[
[
8]
9]
E. Pivetta, M. Scapolan, M. Pecolo, B. Wassermann, I. Abu-Rumeileh,
L. Balestreri, E. Borsatti, C. Tripodo, A. Colombatti, P. Spessotto,
Breast Cancer Res. 2011, 13, R105.
J. A. Blagg, M. C. Noe, L. A. Wolf-Gouveia, L. A. Reiter, E. R. Laird, S.
P. Chang, D. E. Danley, J. T. Downs, N. C. Elliott, J. D. Eskra, R. J.
Griffiths, J. R. Hardink, A. I. Hauget, C. S. Jones, J. L. Liras, L. L.
Lopresti-Morrow, P. G. Mitchell, J. Pandit, R. P. Robinson, C.
Subramanyam, M. L. Vaughn-Bowser, S. A. Yocum, Bioorg. Med.
Chem. Lett. 2005, 15, 1807-1810.
a) C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug
Deliver. Rev. 1997, 23, 3-25; b) H. van de Waterbeemd, E. Gifford, Nat.
Rev. Drug Discov. 2003, 2, 192-204.
[16]
[17]
H. van de Waterbeemd, D. A. Smith, K. Beaumont, D. K. Walker, J.
Med. Chem. 2001, 44, 1313-1333.
[
[
10]
11]
M. Shah, D. Huang, T. Blick, A. Connor, L. A. Reiter, J. R. Hardink, C.
C. Lynch, M. Waltham, E. W. Thompson, PLoS One 2012, 7, e29615.
A. Lin, C. J. Giuliano, A. Palladino, K. M. John, C. Abramowicz, M. L.
Yuan, E. L. Sausville, D. A. Lukow, L. Liu, A. R. Chait, Z. C. Galluzzo,
C. Tucker, J. M. Sheltzer, Sci. Transl. Med. 2019, 11, eaaw8412.
a) A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, B. F. Cravatt,
Proc. Natl. Acad. Sci. USA 2004, 101, 10000-10005; b) P. Cuniasse, L.
Devel, A. Makaritis, F. Beau, D. Georgiadis, M. Matziari, A. Yiotakis, V.
Dive, Biochimie 2005, 87, 393-402.
L. Fredlund, S. Winiwarter, C. Hilgendorf, Mol. Pharm. 2017, 14, 1601-
1609.
[18]
[19]
S. G. Almalki, D. K. Agrawal, Stem Cell Res. Ther. 2016, 7, 129.
a) T. A. Guise, J. M. Chirgwin, Clin. Orthop. Relat. Res. 2003, 415
Suppl., S32-S38; b) S. Marino, J. G. Logan, D. Mellis, M. Capulli,
Bonekey Rep. 2014, 3, 570.
[
[
12]
13]
[20]
[21]
[22]
[23]
K. Kim, V. Punj, J.-M. Kim, S. Lee, T. S. Ulmer, W. Lu, J. C. Rice, W.
An, Genes Develop. 2016, 30, 208-219.
K. C. Nannuru, M. Futakuchi, M. L. Varney, T. M. Vincent, E. G.
Marcusson, R. K. Singh, Cancer Res. 2010, 70, 3494-3504.
L. Zhu, Y. Tang, X. Y. Li, E. T. Keller, J. Yang, J. S. Cho, T. Y.
Feinberg, S. J. Weiss, Sci. Transl. Med. 2020, 12, eaaw6143.
C. Morrison, S. Mancini, J. Cipollone, R. Kappelhoff, C. Roskelley, C.
Overall, J. Biol. Chem. 2011, 286, 34271-34285.
a) J. M. Chen, F. C. Nelson, J. I. Levin, D. Mobilio, F. J. Moy, R.
Nilakantan, A. Zask, R. Powers, J. Am. Chem. Soc. 2000, 122, 9648-
9
654; b) C. K. Engel, B. Pirard, S. Schimanski, R. Kirsch, J.
Habermann, O. Klingler, V. Schlotte, K. U. Weithmann, K. U. Wendt,
Chem. Biol. 2005, 12, 181-189; c) L. A. Reiter, K. D. Freeman-Cook, C.
S. Jones, G. J. Martinelli, A. S. Antipas, M. A. Berliner, K. Datta, J. T.
1
0
This article is protected by copyright. All rights reserved.