Article
Organometallics, Vol. 30, No. 5, 2011 1237
activities in the selective reduction of polar bonds to produce
valuable alcohols and amines. Several studies, both
theoretical10-12 and experimental,13-15 including the study of
kinetic isotope effects,16-18 have been conducted to under-
stand the mechanism of action using the “NH-effect” and the
bifunctional nature of the true form of catalytically active
species. The presence of the N-H group and its relation-
ship to the outer-sphere bifunctional19,20 and inner-sphere
mechanisms21,22 have also been studied by many research groups.
The many catalyst systems that were studied by our
research group23-28 which undergo efficient H2-hydroge-
nation of ketones and imines, including those of trans-
Ru(H)2((R)-binap)(tmen), (OC-6-22)-Ru(H)2(PPh3)2(tmen)
(tmen = 2,3-dimethylbutane-2,3-diamine), and trans-Ru-
(H)2(κ4-P2(NH)2)26,29 (P2(NH)2 = tetradentate diphosphi-
nediamine ligand), were found to have the heterolytic
splitting of the coordinated η2-H2 ligand on the active
species as the rate-determining step from various
mechanistic and computational studies.25-28 These are
active catalysts, without prior activation with base, and
catalyze efficiently the reduction of ketones by H2 under
mild conditions.24-27 The energy barrier calculated for the
model complex (OC-6-22)-Ru(H)2(PH3)2(en) (en = ethyl-
enediamine) was found to be higher in the heterolytic
splitting of H2 compared to the concerted transfer of Hþ/
H- to the ketone in a six-membered-ring transition
state.8-11 The corresponding coordinatively unsaturated
complexes containing a ruthenium-amido bond were iso-
lated, and these were also found to activate dihydrogen
to give the trans-dihydride complexes.24-27 For the sys-
tem trans-Ru(H)2(diamine)((R)-binap), Bergens and co-
workers suggested a ruthenium(II) alkoxide complex was
indeed formed prior to the formation of such amido
complexes.15,30
Not much work has been devoted to study the mechanism
of action of catalysts containing phosphine-amine
ligands (P-NH2).31-34 The ruthenium catalysts containing
these ligands effect not only the reduction of ketones32
but also the hydrogenation of a broad range of substrates,
including imines,34 esters,35 epoxides,31 and other
polar bonds.36 All these may utilize the same bifunctional
mechanism involving the action of the M-H and N-H
groups. The notion of replacing the phosphine with
an N-heterocyclic carbene (NHC) donor, in particular,
a donor-functionalized NHC, is therefore attractive to
achieve the goal of greener chemistry.37 We have previously
reported that the transfer hydrogenation catalyst [Ru(p-
cymene)(m-CH2NH2)Cl]PF6 (1) is effective for the hydro-
genation of acetophenone to 1-phenylethanol in basic
2-propanol at 75 °C. This system reached a maximum
conversion of 96% and a turnover frequency (TOF) of
880 h-1 (Figure 1).38 Here we present our study toward its
H2-hydrogenation activity in the reduction of ketones
and a detailed mechanistic investigation, including kinetic stud-
ies and theoretical computations that were performed
to study the possibility of the cooperative nature of the
ligand and the metal center in this new class of ligand
system.
(10) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122,
1466–1478.
(11) (a) Di Tommaso, D.; French, S. A.; Catlow, C. R. A. J. Mol.
Struct. (THEOCHEM) 2007, 812, 39–49. (b) Puchta, R.; Dahlenburg,
L.; Clark, T. Chem. Eur. J. 2008, 14, 8898–8903. (c) Chen, Y.; Tang,
Y. H.; Lei, M. Dalton Trans. 2009, 2359–2364. (d) Lei, M.; Zhang, W. C.;
Chen, Y.; Tang, Y. H. Organometallics 2010, 29, 543–548.
(12) (a) Zhang, H. H.; Chen, D. Z.; Zhang, Y. H.; Zhang, G. Q.; Liu,
J. B. Dalton Trans. 2010, 39, 1972–1978. (b) Chen, Z.; Chen, Y.; Tang,
Y. H.; Lei, M. Dalton Trans. 2010, 39, 2036–2043.
(13) (a) Maire, P.; Buttner, T.; Breher, F.; Le Floch, P.; Grutzmacher,
H. Angew. Chem., Int. Ed. 2005, 44, 6318–6323. (b) Friedrich, A.; Drees,
M.; auf der Gunne, J. S.; Schneider, S. J. Am. Chem. Soc. 2009, 131,
17552–17553.
(14) (a) Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.;
Murata, K.; Noyori, R. Chem. Asian J. 2006, 1, 102–110. (b) Ohkuma,
T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval, C.; Noyori, R. J.
Am. Chem. Soc. 2006, 128, 8724–8725.
(15) Hamilton, R. J.; Leong, C. G.; Bigam, G.; Miskolzie, M.;
Bergens, S. H. J. Am. Chem. Soc. 2005, 127, 4152–4153.
(16) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am.
Chem. Soc. 2003, 125, 13490–13503.
(17) Kass, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew. Chem.,
Int. Ed. 2009, 48, 905–907.
(18) Zimmer-De Iuliis, M.; Morris, R. H. J. Am. Chem. Soc. 2009,
131, 11263–11269.
(19) (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40–
73. (b) Ma, G. B.; McDonald, R.; Ferguson, M.; Cavell, R. G.; Patrick,
B. O.; James, B. R.; Hu, T. Q. Organometallics 2007, 26, 846–854. (c)
Baratta, W.; Ballico, M.; Esposito, G.; Rigo, P. Chem. Eur. J. 2008, 14,
5588–5595. (d) Sandoval, C. A.; Shi, Q. X.; Liu, S. S.; Noyori, R. Chem.
Asian J. 2009, 4, 1221–1224.
(20) Ito, M.; Hirakawa, M.; Murata, K.; Ikariya, T. Organometallics
2001, 20, 379–381.
(21) (a) Leong, C. G.; Akotsi, O. M.; Ferguson, M. J.; Bergens, S. H.
Chem. Commun. 2003, 750–751. (b) Phillips, S. D.; Fuentes, J. A.;
Clarke, M. L. Chem. Eur. J. 2010, 16, 8002–8005.
(30) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130,
11979–11987.
(31) Ito, M.; Hirakawa, M.; Osaku, A.; Ikariya, T. Organometallics
2003, 22, 4190–4192.
(32) (a) Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Organome-
tallics 2004, 23, 5524–5529. (b) Jia, W. L.; Chen, X. H.; Guo, R. W.;
Sui-Seng, C.; Amoroso, D.; Lough, A. J.; Abdur-Rashid, K. Dalton
Trans. 2009, 8301–8307.
(22) Lundgren, R. J.; Rankin, M. A.; McDonald, R.; Schatte, G.;
Stradiotto, M. Angew. Chem., Int. Ed. 2007, 46, 4732–4735.
(23) Abdur-Rashid, K.; Lough, A. J.; Morris, R. H. Organometallics
2001, 20, 1047–1049.
(24) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am.
Chem. Soc. 2001, 123, 7473–7474.
(25) (a) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey,
J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104–
15118. (b) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.;
Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870–1882.
(26) Rautenstrauch, V.; Hoang-Cong, X.; Churlaud, R.; Abdur-
Rashid, K.; Morris, R. H. Chem. Eur. J. 2003, 9, 4954–4967.
(27) Clapham, S. E.; Morris, R. H. Organometallics 2005, 24, 479–
481.
(28) Hadzovic, A.; Song, D.; MacLaughlin, C. M.; Morris, R. H.
Organometallics 2007, 26, 5987–5999.
(29) (a) Li, T.; Churlaud, R.; Lough, A. J.; Abdur-Rashid, K.;
Morris, R. H. Organometallics 2004, 23, 6239–6247. (b) Li, T.; Bergner,
I.; Haque, F. N.; Zimmer-De Iuliis, M.; Song, D.; Morris, R. H.
Organometallics 2007, 26, 5940–5949.
(33) (a) Dahlenburg, L.; Gotz, R. Eur. J. Inorg. Chem. 2004, 888–905.
(b) Blaquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 14034–14035.
(34) Abdur-Rashid, K.; Guo, R. W.; Lough, A. J.; Morris, R. H.;
Song, D. T. Adv. Synth. Catal. 2005, 347, 571–579.
(35) (a) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew.
Chem., Int. Ed. 2007, 46, 7473–7476. (b) Kuriyama, W.; Ino, Y.; Ogata,
O.; Sayo, N.; Saito, T. Adv. Synth. Catal. 2010, 352, 92–96.
(36) (a) Ito, M.; Sakaguchi, A.; Kobayashi, C.; Ikariya, T. J. Am.
Chem. Soc. 2007, 129, 290–291. (b) Ito, M.; Koo, L. W.; Himizu, A.;
Kobayashi, C.; Sakaguchi, A.; Ikariya, T. Angew. Chem., Int. Ed. 2009,
48, 1324–1327.
(37) (a) Lee, H. M.; Lee, C. C.; Cheng, P. Y. Curr. Org. Chem. 2007,
11, 1491–1524. (b) Kuhl, O. Chem. Soc. Rev. 2007, 36, 592–607. (c)
Normand, A. T.; Cavell, K. J. Eur. J. Inorg. Chem. 2008, 2781–2800. (d)
Corberan, R.; Mas-Marza, E.; Peris, E. Eur. J. Inorg. Chem. 2009, 1700–
1716. (d) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009,
109, 3612–3676.
(38) O, W. W. N.; Lough, A. J.; Morris, R. H. Organometallics 2009,
28, 6755–6761.