1 C. Caltagirone and P. A. Gale, Chem. Soc. Rev., 2009, 38, 520; P. A.
Gale, S. E. Garcia-Garrido and J. Garric, Chem. Soc. Rev., 2008, 37,
151; C. Suksai and T. Tuntulani, Chem. Soc. Rev., 2003, 32, 192; P. D.
Beer and E. J. Hayes, Coord. Chem. Rev., 2003, 240, 167; J. L. Sessler,
S. Camiolo and P. A. Gale, Coord. Chem. Rev., 2003, 240, 17; S. L.
Wiskur, H. Ait-Haddou, J. J. Lavigne and E. V. Anslyn, Acc. Chem.
Res., 2001, 34, 963.
2 Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed.; Wiley VCH:
New York, 1999.
3 Supramolecular Chemistry of Anions,E. Bianchi, K. Bowman-James
and E. Garc´ıa-Espan˜a, ed.; Wiley-VCH: New York, 1997.
4 E. J. Cho, J. W. Moon, S. W. Ko, J. Y. Lee, S. K. Kim, J. Yoon and K.
C. Nam, J. Am. Chem. Soc., 2003, 125, 12376.
5 V. Thiagarajan, P. Ramamurthy, D. Thirumalai and V. T. Ramakrish-
nan, Org. Lett., 2005, 7, 657; D. A. Jose, D. K. Kumar, B. Ganguly and
A. Das, Org. Lett., 2004, 6, 3445; B. P. Hay, T. K. Firman and B. A.
Moyer, J. Am. Chem. Soc., 2005, 127, 1810.
6 P. D. Beer, F. Szemes, V. Balzani, C. M. Sala, M. G. B. Drew, S. W. Dent
and M. Maestri, J. Am. Chem. Soc., 1997, 119, 11864.
7 D. H. Lee, J. H. Im, S. U. Son, Y. K. Chung and J.-I. Hong, J. Am.
Chem. Soc., 2003, 125, 7752; D. H. Lee, H. Y. Lee, K. H. Lee and J.-I.
Hong, Chem. Commun., 2001, 1188.
8 C. Schmuck and M. Schwegmann, J. Am. Chem. Soc., 2005, 127, 3373;
M. J. Chmielewski, M. Charon and J. Jurczak, Org. Lett., 2004, 6, 3501;
P. A. Gale, J. L. Sessler, V. Kra´l and V. Lynch, J. Am. Chem. Soc., 1996,
118, 5140.
Fig.
6
(a) Ball-and-stick representation of one of two unique
9 J. O. Yu, C. S. Browning and D. H. Farrar, Chem. Commun., 2008, 1020;
C. Caltagirone, J. R. Hiscock, M. B. Hursthouse, M. E. Light and P.
A. Gale, Chem.–Eur. J., 2008, 14, 10236; C. Caltagirone, P. A. Gale, J.
R. Hiscock, S. J. Brooks, M. B. Hursthouse and M. E. Light, Chem.
Commun., 2008, 3007; F. M. Pfeffer, K. F. Lim and K. J. Sedgwick, Org.
Biomol. Chem., 2007, 5, 1795.
TTF-dipyrrolic molecules. (b) Stacking of 1 as viewed down the shorter
molecular axes gives rise to a distance of 3.48 A between each plane.
˚
is stabilised by p–p interactions between TTF units as evidenced
˚
by the 3.48 A separation between aromatic planes. Interestingly,
10 J. R. Hiscock, C. Caltagirone, M. E. Light, M. B. Hursthouse and P.
A. Gale, Org. Biomol. Chem., 2009, 7, 1781; M. J. Chmielewski, L. Y.
Zhao, A. Brown, D. Curiel, M. R. Sambrook, A. L. Thompson, S. M.
Santos, V. Felix, J. J. Davis and P. D. Beer, Chem. Commun., 2008, 3154;
P. V. Piatek, M. Lynch and J. L. Sessler, J. Am. Chem. Soc., 2004, 126,
16073.
11 D. Jimenez, R. Martinez-Manez, F. Sancenon and J. Soto, Tetrahedron
Lett., 2002, 43, 2823; A. Das, B. Ganguly, D. K. Kumar and D. A. Jose,
Org. Lett., 2004, 6, 3445; H. Miyaji and J. L. Sessler, Angew. Chem.,
Int. Ed., 2001, 40, 154.
there is a self-organisation of the TTF direction on account of
˚
interactions (N–H . . . .N = 2.16 A) between the pyrrole hydrogen
of one molecule with the quinoxaline group of another. The
dispersive interactions of the propyl groups on one side of the
molecular stack with the same set on an adjacent column lead
ultimately to a herringbone structure.
In summary, we report a novel dipyrrolic based fluorescent
neutral sensor for fluoride displaying optical changes for both
UV/vis-absorption and fluorescence. Although the addition of
fluorine causes an intense change in the electronic absorption
spectrum of the compound, the electrochemical response remains
largely unaffected. This suggests that while the molecular orbital
responsible for the colour is close to the anion binding site,
the electrochemical orbitals associated with the TTF moiety are
sufficiently remote not to be influenced by changes in electron
distribution caused by binding. The material may be easily
electrodeposited from solution by scanning the potential to
the second oxidation process. This produces a stable modified
electrode which is electrochemically active in contact with aqueous
electrolyte solution. While a polymerization process involving the
pyrrole groups can also yield an explanation, we are reluctant
to fully discount a mechanism involving TTF2+ alone because of
the surface effects where no pyrrole groups were present. Further
work is clearly required to elucidate the mechanism involved in
this intriguing electrodeposition.
12 S. V. Bhosale, S. V. Bhosale, Mohan B. Kalyankar and S. J. Langford,
Org. Lett., 2009, 11, 5418.
13 Examples of electron-acceptor chromophores for anion sensing see: R.
Nishiyabu and P. Anzenbacher Jr, J. Am. Chem. Soc., 2005, 127, 8270; J.
T. Davis, P. A. Gale, O. A. Okunola, P. Prados, J. C. Iglesias-Sa´nchez, T.
Torroba and R. Quesada, Nat. Chem., 2009, 1, 138; T. Gunnlaugsson,
P. E. Kruger, P. Jensen, F. M. Pfeffer and G. M. Hussey, Tetrahedron
Lett., 2003, 44, 8909.
14 M. Cametti and K. Rissanen, Chem. Commun., 2009, 2809; T. W.
Hudnall, C.-W. Chiu and F. P. Gabbai, Acc. Chem. Res., 2009, 42, 388;
I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam, E. Suresh
and P. Ghosh, Dalton Trans., 2009, 4160.
15 For example: (a) X. He, S. Hu, K. Liu, Y. Guo, J. Xu and S. Shao, Org.
Lett., 2006, 8, 333; I. H. A. Badr and M. E. Meyerhoff, J. Am. Chem.
Soc., 2005, 127, 5318; T. H. Kim, M. S. Choi, B.-H. Sohn, S.-Y. Park,
W. S. Lyoo and T. S. Lee, Chem. Commun., 2008, 2364; T. Wang, Y.
Bai, L. Ma and X.-P. Yan, Org. Biomol. Chem., 2008, 6, 1751.
16 For example: X. Jiang, M. C. Vieweger, J. C. Bollinger, B. Dragnea and
D. Lee, Org. Lett., 2007, 9, 3579; K. M. K. Swamy, Y. J. Lee, H. N. Lee,
J. Chun, Y. Kim, S.-J. Kim and J. Yoon, J. Org. Chem., 2006, 71, 8626;
G. Xu and M. A. Tarr, Chem. Commun., 2004, 1050.
17 R. Nishiyabu and P. Anzenbacher Jr., J. Am. Chem. Soc., 2005, 127,
8270; D. Aldakov and P. Anzenbacher Jr., J. Am. Chem. Soc., 2004,
126, 4752; C. B. Black, B. Andrioletti, A. C. Try, C. Ruiperez and J. L.
Sessler, J. Am. Chem. Soc., 1999, 121, 10438.
Notes and references
18 D. Canavet, M. Salle´, G. Zhang, D. Zhang and D. Zhu, Chem.
Commun., 2009, 2245J. Yamada and T. Sugimoto, TTF Chemistry:
Fundamentals & Applications of Tetrathiafulvalene, Kodansha (Tokyo)
and Springer (Berlin, Heidelberg, New York), 2004.
19 H. Lu, W. Xu, D. Zhang, C. Chen and D. Zhu, Org. Lett., 2005, 7, 4629;
H. Lu, W. Xu, D. Zhang and D. Zhu, Chem. Commun., 2005, 4777; Q.
Y. Zhu, H. H. Lin, J. Dai, G. Q. Bian, Y. Zhang and W. Lu, New J.
Chem., 2006, 30, 1140; A. S. F. Boyd, G. Cooke, F. M. A. Duclairoir
‡ Data was obtained using an EXCEL based non-linear regression analysis
program, with an estimated error of ca. 10%.
§ Crystallographic data for the structure analyses have been deposited
with the Cambridge Crystallographic Data Centre, CCDC 834006
for structure of 1. Copies of this information may be obtained free
of charge from the Director, CCDC, 12 Union Road, Cambridge,
CB21EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk
708 | Org. Biomol. Chem., 2012, 10, 705–709
This journal is
The Royal Society of Chemistry 2012
©