Highly N-Methylated Linear Peptides
Journal of Natural Products, 2006, Vol. 69, No. 1 91
Acknowledgment. This work was supported by the National
Institutes of Health (RO1 CA 47135). We thank B. Gerstenberger for
assistance with synthesis of N-Me amino acids, J. Cunniff and D. Kage
at Thermo Electron for providing FTMS data, and N. Sevova at Notre
Dame for providing FABMS data. We would also like to thank C. Bui
for AA analysis, A. Amagata for assistance with fungal cultures, and
S. Pomponi for sponge identification. Mr. M. Waddington, Accugenix,
a division of Acculabs, INS, is acknowledged for molecular identifica-
tion, and Dr. D. A. Sutton, Department of Pathology, University of
Texas Health Science Center at San Antonio, is acknowledged for
taxonomic identification of the fungal strain.
Supporting Information Available: 1H and 13C NMR and FABMS
1
for compound 3, and H, 13C NMR, gHMBC, gCOSY, and TOCSY
for compounds 1 and 2 along with VT NMR figures are available free
References and Notes
(1) For a recent review of the entire chemistry of marine-derived fungi
(273 compounds discovered to 2002), see: Bugni, T. S.; Ireland, C.
M. Nat. Prod. Rep. 2004, 21, 143-163.
Figure 4. Substructures D-H for RHM2 (2) illustrating key
gHMBC correlations.
(2) (a) Clutterbuck, P. W.; Oxford, A. E.; Raistrick, H.; Smith, G.
Biochem. J. 1932, 26, 1441-1458. (b) Campbell, I. M.; Calzadilla,
C. H.; McCorkindale, N. J. Tetrahedron Lett. 1966, 7, 5107-5111.
(3) (a) Cole, R. J.; Cox, R. H. Handbook of Toxic Fungal Metabolites;
Academic Press: New York, 1981. (b) Seebacher, G.; Mallinger,
R.; Laufer, G.; Grimm, M.; Griesmacher, A.; Weigel, G.; Wolner,
E.; Muller, M. M. AdV. Exp. Med. Biol. 1998, 431, 801-803. (c)
Covarrubias-Zu´niga, A.; Gonzalez-Lucan, A.; Dominguez, M. M.
Tetrahedron 2003, 59, 1989-1994.
tive HPLC (50 to 88% MeCN in H2O with 0.1% formic acid) to afford
345 mg of 1 and 33.5 mg of 2.
RHM1 (1): fine white crystals; [R]25 -125.0 (c 0.08, MeOH);
D
UV (MeOH) λmax (log ꢀ) 205 nm (4.33); 1H NMR (500 MHz, DMSO-
d6) and 13C NMR (125 MHz, DMSO-d6), see Table 3; FTMS m/z [M
+ H]+ 1036.7386 (calcd for C53H98N9O11 1036.7391).
RHM2 (2): fine white crystals; [R]25 -137.5 (c 0.08, MeOH);
D
(4) (a) Endo, A.; Hasumi, K.; Sakai, K.; Kanabe, T. J. Antibiot. 1985,
38, 920-925. (b) Rosen, T.; Heathcock, C. Tetrahedron 1986, 42,
4909-4951. (c) McKenney, J. M. Clin. Pharm. 1988, 7, 21-36.
(5) Cheng, X. C.; Varoglu, M.; Abrell, L.; Crews, P.; Lobkovaky, E.;
Clardy, J. J. Org. Chem. 1994, 59, 6344-6348.
UV (MeOH) λmax (log ꢀ) 207 nm (4.47); 1H NMR (600 MHz, DMSO-
d6) and 13C NMR (150 MHz, DMSO-d6), see Table 4; FTMS m/z [M
+ H]+ 1022.7242 (calcd for C52H96N9O11 1022.7244).
Efrapeptin G (3): white solid; 1H NMR (500 MHz, MeOH-d4) and
13C NMR (125 MHz, MeOH-d4), see Table 2; FTMS m/z [M]+
1648.0914 (calcd for C83H143N18O16 1648.0924).
(6) Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; Kawai,
K.; Usami, Y.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T.
Tetrahedron Lett. 1992, 33, 1621-1624.
Preparation of (2S,3R)-N-Me-Ile and (2R,3S)-N-Me-Ile.30 The
procedure consisted of combining N-Boc-(2R,3S)-Ile (155.6 mg)
dissolved in THF under an N2 atmosphere with anhydrous CH3I (0.335
mL) at 0 °C followed by the addition of 60% oil suspension of NaH
(70 mg) while gently stirring under a flow of N2. The resulting mixture
was stirred for 16 h at room temperature under N2, then diluted with
saturated aqueous NH4Cl (5 mL) and extracted with diethyl ether (5
mL). The organic layer was extracted with saturated aqueous NaHCO3-
water (1:1) three times (2.5 mL). The aqueous layers were combined
and adjusted to pH 3 with 10% citric acid and extracted with EtOAc
(2.5 mL) two times. The organic layers were combined and concentrated
through rotary evaporation, yielding 80.4 mg of pale yellow oil. The
material was deprotected by dissolving 18.0 mg of the crude oil in 1
mL of CH2Cl2 and adding 1 mL of TFA while stirring under an N2
atmosphere at 0 °C for 1.5 h. The same procedure was carried out
with N-Boc-(2S,3R)-Ile (131.4 mg), resulting in 70.8 mg of a pale
(7) Varoglu, M.; Corbett, T. H.; Valeriote, F. A.; Crews, P. J. Org. Chem.
1997, 62, 7078-7079.
(8) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.;
Thebtaranonth, Y. J. Org. Chem. 2002, 67, 1561-1566.
(9) (a) Numata, A.; Amagata, T.; Minoura, K.; Ito, T. Tetrahedron Lett.
1997, 38, 5675-5678. (b) Amagata, T.; Bio, M.; Ohta, T.; Minoura,
K.; Numata, A. J. Chem. Soc., Perkin Trans 1 1998, 3585-3599.
(10) (a) Amagata, T.; Rath, C.; Rigo, F. F.; Tarlov, N.; Tenney, K.;
Valeriote, F. A.; Crews, P. J. Med. Chem. 2003, 46, 4342-4350.
(b) Laurent, D.; Guella, G.; Roquebert, M. F.; Farinole, F.; Mancini,
I.; Pietra, F. Planta Med. 2000, 66, 63-66.
(11) Abraham, E. Cephalosporins and Penicillins: Chemistry and Biology;
Flynn, E. H., Ed.; Academic Press: New York, 1972.
(12) Chen, C. Y.; Imamura, N.; Nishijima, M.; Adachi, K.; Sakai, M.;
Sano, H. J. Antibiot. 1996, 49, 998-1005.
(13) Abdel-Lateff, A.; Konig, G. M.; Fisch, K. M.; Holler, U.; Jones, P.
G.; Wright, A. D. J. Nat. Prod. 2002, 65, 1605-1611.
(14) Verracarin A, isororidin A, and verrol-4-acetate; see ref 10b.
(15) The oxepinamides and fumiquinazones: Belofsky, G. N.; Anguera,
M.; Jensen, P. R.; Fenical, W. M. Chem. Eur. J. 2000, 6, 1355-
1360.
1
yellow oil. The identity of the products was confirmed with H NMR
and LCMS; the purities were found to be sufficient for use as standards
for the Marfey’s analysis.
(16) The virescenosides come from both marine fungi: (a) Afiyatullov,
S. S.; Kuznetsova, T. A., Isakov, V. V.; Pivkin, M. V.; Prokof’eva,
N. G.; Elyakov, G. B. J. Nat. Prod. 2000, 63, 848-850. (b)
Afiyatullov, S. S.; Kalinovsky, A. I.; Kuznetsova, T. A.; Isakov, V.
V.; Pivkin, M. V.; Dmitrenok, P. S.; Elyakov, G. B. J. Nat. Prod.
2002, 65, 641-644. (c) Afiyatullov, S. S.; Kalinovsky, A. I.;
Kuznetsova, T. A.; Pivkin, M. V.; Pfrkof’eva, N. G.; Dmitrenok, P.
S.; Elyakov, G. B. J. Nat. Prod. 2004, 67, 1047-1051; and terrestrial
fungi: (d) Cagnoli-Bellavita, N.; Ceccherelli, P.; Mariani, R.;
Polonsky, J.; Baskevitch, Z. Eur. J. Biochem. 1970, 15, 356-559.
(17) (a) Gupta, S.; Krasnoff, S. B.; Roberts, D. W.; Renvich, J. A. A.;
Brinen, L. S.; Clardy, J. J. Org. Chem. 1992, 57, 2306-2313, 13C
Determination of R/S Configuration Using Marfey’s Method.31
Approximately 1 mg of 1 was hydrolyzed with 1 mL of 6 N HCl at
110 °C for 20 h. The hydrolysate was evaporated to dryness and treated
with the following: 0.100 mL of 1 M NaHCO3 and 0.050 mL of a 10
mg/mL solution of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (L-
FDAA). The mixture was heated at 80 °C for 30 min, cooled to room
temperature, and quenched with 0.050 mL of 2 N HCl. Then 0.300
mL of MeCN was added and samples were evaluated with LCMS. A
linear gradient with aqueous MeCN with 0.01 M TFA was run on an
analytical C-18 RP column over 40 min (25 to 100%), and retention
times of standards were compared with the derivatized hydrolysate of
1. Retention times (min) of standards: (S)-Gln (13.2), (R)-Gln (13.4),
(2S,3S)-N-Me-Ile (24.2), (2R,3R)-N-Me-Ile (25.4), (2S,3R)-N-Me-Ile
(24.3), (2R,3S)-N-Me-Ile (25.6), (2S,3S)-Ile (22.6), (2R,3R)-Ile (24.9),
(2S,3R)-Ile (22.5), (2R,3S)-Ile (24.8), (S)-N-Me-Val (22.3), (R)-N-Me-
Val (23.5), (S)-N-Me-Leu (23.6), (R)-N-Me-Leu (24.5), (S)-Glu (15.4),
(R)-Glu (15.9). Retention times (min) for the hydrolysate of 1: (R)-
Glu (15.9), (S)-N-Me-Val (22.4), (2S,3S)-Ile (22.6), (S)-N-Me-Leu
(23.6), (2S,3S)-N-Me-Ile (24.1).
1
and H NMR comparisons in Table 2 are made to compound 11 in
this publication. (b) Drasnoff, S. B.; Gupta, S.; St. Leger, R. J.;
Renwick, J. A. A.; Roberts, D. W. J. InVertebr. Pathol. 1991, 58,
180-188.
(18) Valeriote, F.; Grieshaber, C. K.; Media, J.; Pietraszkewicz, H.;
Hoffmann, J.; Pan, M.; McLaughline, S. J. Exp. Ther. Oncol. 2002,
2, 228-236.
(19) Krasnoff, S. B.; Gupta, S. J. Chem. Ecol. 1991, 17, 1953-1962.
(20) For nomenclature of the ions, see: Roepstorff, P.; Fohlman, J.
Biomed. Mass Spectrom. 1984, 11 601.