544
M.-G. Shen et al. / Journal of Fluorine Chemistry 129 (2008) 541–544
bottom layer. Based on GC-MS and 19F NMR data, the distribution
of Yb(OPf)3 found in organic layer was less than 1% and only trace
of perfluorodecalin leached to organic phase can be detected.
We next sought to probe whether the catalyst could be recycled.
The condensation of benzaldehyde, benzil and NH4OAc under the
conditions described in Table 2 with Yb(OPf)3 as catalysts was run
for five consecutive cycles, furnishing the corresponding imidazole,
with 97%, 96%, 95%, 94%, 94% isolated yields. The robustness of the
catalyst for recycling using may be attributed that these rare-earth
metal perflates are stable in aqueous conditions [24], and the metal
catalyst coordinated by fluorous ponytail ‘‘C8F17’’ can dissolve into
the fluorous phase. The separated fluorous phase containing only
catalyst could be reused for the next condensation without any
treatment, and this workup procedure of recycling was accom-
plished by simple phase-separation.
2H, CH2), 7.50–8.15 (m, 10H, Ar), 13.40 (brs, NH); MS (EI) m/z 248
(M+).
2-Propyl-4,5-diphenylimidazole (12): 31% yield; mp: 256–
258 8C; 1H NMR (500 MHz, CDCl3)
d = 0.96 (t, 3H, CH3), 1.66 (m, 2H,
CH2), 2.55 (t, 2H, CH2), 7.45–8.10 (m, 10H, Ar), 13.40 (brs, NH); MS
(EI) m/z 262 (M+).
References
[1] J.G. Lombardino, E.H. Wiseman, J. Med. Chem. 17 (1974) 1182–1188.
[2] (a) R. Consonni, P.D. Croce, R. Ferraccioli, C.L. Rosa, J. Chem. Res. (S) (1991) 188–
189;
(b) D.A. Evans, K.M. Lundy, J. Am. Chem. Soc. 114 (1992) 1495–1496;
(c) C.F. Claiborne, N.J. Liverton, K.T. Nguyen, Tetrahedron Lett. 39 (1998) 8939–
8942;
(d) J. Tsuji, K. Sakai, H. Nemoto, H. Nagashima, J. Mol. Catal. 18 (1983) 169–
176;
In conclusion, Yb(OPf)3 is demonstrated to be new and highly
effective catalysts for preparation of trisubstituted imidazoles in
fluorous biphasic system. By simple separation of the fluorous
phase containing only catalyst, the reaction can be repeated many
times. Further study on the application of FBS to other reactions,
which can be promoted by such Lewis acids, is under way in this
laboratory.
(e) B. Radziszewski, Ber. Dent. Chem. Ges. (Ber.) 15 (1882) 1493–1496;
(f) H.H. Wasserman, Y.O. Long, R. Zhang, J. Parr, Tetrahedron Lett. 43 (2002)
3351–3353;
(g) Y. Kamitori, J. Heterocyclic Chem. 38 (2001) 773–776;
(h) I. Lantos, W.Y. Zanng, Y. Shiu, D.S. Eggleston, J. Org. Chem. 58 (1993) 7092–
7095;
(i) C.-Z. Zhang, E.J. Moran, T.F. Woiwade, K.M. Short, A.M.M. Mjalli, Tetrahedron
Lett. 37 (1996) 751–754;
(j) C.F. Claiborne, N.J. Liverlon, K.T. Nguyen, Tetrahedron Lett. 39 (1998) 8939–
8942;
2,4,5-Triphenylimidazole (1): 97% yield; mp: 272–273 8C; 1H
(k) K.M. Bleicher, F. Gerber, Y. Wuthrich, A. Alanine, A. Caprella, Tetrahedron Lett.
43 (2002) 7687–7690.
NMR (500 MHz, CDCl3) d = 7.51–7.90 (m, 15H, Ar), 12.60 (brs, NH);
MS (EI) m/z 296 (M+).
[3] F.-J. Liu, J. Chen, J. Zhao, Y. Zhao, L. Li, H. Zhang, Synthesis (2003) 2661–2666.
[4] H. Weinmann, M. Hahhe, K. Koeing, E. Mertin, U. Tilstam, Tetrahedron Lett. 43
(2002) 593–595.
[5] S. Sarshar, D. Siev, A.M.M. Mjalli, Tetrahedron Lett. 37 (1996) 835–838.
[6] N.G. Clark, E. Cawkill, Tetrahedron Lett. (1975) 2717–2720.
[7] E.D. Frantz, L. Morency, A. Soheili, J.A. Murry, E.J.J. Grabowski, R.D. Tillyer, Org.
Lett. 6 (2004) 843–846.
[8] S. Balalaie, M.M. Hashemi, M. Akhbari, Tetrahedron Lett. 44 (2003) 1709–
1711.
[9] S. Balalaie, A. Arabanian, Green Chem. 2 (2000) 274–276.
[10] A.Y. Usyatinsky, Y.L. Khemelnitsky, Tetrahedron Lett. 41 (2000) 5031–5034.
[11] S.E. Wolkenberg, D.D. Wisnoski, W.H. Leister, Y. Wang, Z. Zhao, C.W. Lindsley, Org.
Lett. 6 (2004) 1453–1456.
[12] J.M. Cobb, N. Grimster, N. Khan, T.Y.Q. Lai, H.J. Payne, L.J. Payne, J. Raynham, J.
Taylor, Tetrahedron Lett. 43 (2002) 7557–7560.
[13] M. Kidwai, P. Mothsra, V. Bansal, R.K. Somvanshi, A.S. Ethayathulla, S. Dey, T.P.
Singh, J. Mol. Catal. A: Chem. 265 (2007) 177–182.
[14] L.-M. Wang, Y.-H. Wang, T. He, -Y.F. Yao, J.-H. Shao, B. Liu, J. Fluorine Chem. 127
(2006) 1570–1573.
2-(4-Methoxyphenyl)-4,5-diphenylimidazole (2): 97% yield;
mp: 227–228 8C; 1H NMR (500 MHz, CDCl3)
= 3.85 (s, 3H, OCH3),
d
6.93–6.96 (d, 2H, Ar), 7.25–7.59 (m, 10H, Ar), 8.02–8.05 (d, 2H, Ar),
12.52 (brs, NH); MS (EI) m/z 326 (M+).
2-(4-Hydroxyphenyl)-4,5-diphenylimidazole (3): 90% yield;
mp: 235–237 8C; 1H NMR (500 MHz, CDCl3)
14H, Ar), 9.50 (brs, NH); MS (EI) m/z 312 (M+).
d = 7.00–7.90 (m,
2-(2-Hydroxyphenyl)-4,5-diphenylimidazole (4): 89% yield;
mp: 209–210 8C; 1H NMR (500 MHz, CDCl3)
14H, Ar), 9.50 (brs, NH); MS (EI) m/z 312 (M+).
d = 6.70–7.60 (m,
2-(4-Bromophenyl)-4,5-diphenylimidazole (5): 85% yield; mp:
244–246 8C; 1H NMR (500 MHz, CDCl3)
d = 7.20 (d, 2H, Ar), 7.30–
7.60 (m, 10H, Ar), 7.80 (d, 2H, Ar); MS (EI) m/z 375 (M+).
2-(4-Chlorophenyl)-4,5-diphenylimidazole (6): 83% yield; mp:
261–262 8C; 1H NMR (500 MHz, CDCl3)
d = 7.30 (d, 2H, Ar), 7.40–
[15] I.T. Horva´th, J. Rabai, Science 266 (1994) 72–73.
´
[16] (a) J.A. Gladysz, D.P. Curran, I.T. Horvath, Handbook of Fluorous Chemistry,
7.70 (m, 10H, Ar), 7.90 (d, 2H, Ar), 12.50 (s, NH); MS (EI) m/z 330,
330 + 2 (M+).
2-(2-Chlorophenyl)-4,5-diphenylimidazole (7): 80% yield; mp:
188 8C; 1H NMR (500 MHz, CDCl3)
d = 7.27–7.37 (m, 10H, Ar), 7.45–
Wiley-VCH, Weinheim, 2004;
(b) K. Mikami (Ed.), Green Reaction Media in Organic Synthesis, Blackwell,
Oxford, 2005.
[17] (a) K. Mikami, Y. Mikami, Y. Matsumoto, J. Nishikido, F. Yamamoto, H. Nakajima,
Tetrahedron Lett. 42 (2001) 289–292;
7.49 (dd, 1H, Ar), 7.57–7.59 (d, 2H, Ar), 8.02–8.05 (dd, 1H, Ar), 12.50
(brs, NH); MS (EI) m/z 330, 330 + 2 (M+).
(b) J. Nishikido, M. Kamishima, H. Matsuzawa, K. Mikami, Tetrahedron 58 (2002)
8345–8349.
[18] (a) X.-H. Hao, A. Yoshida, J. Nishikido, J. Fluorine Chem. 127 (2006) 193–199;
(b) X.-H. Hao, A. Yoshida, J. Nishikido, Green Chem. (2004) 566–569.
[19] (a) M. Shi, S.-C. Cui, Y.-H. Liu, Tetrahedron 61 (2005) 4965–4970;
(b) M. Shi, S.-C. Cui, J. Fluorine Chem. 116 (2002) 143–147.
[20] (a) M.-G. Shen, C. Cai, J. Fluorine Chem. 3 (2007) 232–235;
(b) M.-G. Shen, C. Cai, Catal. Commun. 6 (2007) 871–875;
(c) M.-G. Shen, C. Cai, W.-B. Yi, J. Fluorine Chem. 128 (2007) 1421–1424;
(d) W.-B. Yi, C. Cai, X. Wang, J. Fluorine Chem. 128 (2007) 919–924.
[21] T. Hanamoto, Y. Sugimoto, Y.Z. Jin, J. Inanaga, Bull. Chem. Soc. Jpn. 70 (1997)
1421–1426.
[22] A.S. Shapi, C.N. Umesh, S.P. Sanjay, D. Thomas, J.L. Rajgopal, V.S. Kumar, Tetra-
hedron 61 (2005) 3539–3546.
[23] S. Ahmad, R. Abbas, J. Mol. Catal. A: Chem. 249 (2006) 246–248.
[24] (a) M. Shi, S.-C. Cui, Chem. Commun. (2002) 994–995;
(b) S. Kobayashi, M. Sugiura, H. Kitagawa, W.W.-L. Lam, Chem. Rev. 102 (2002)
2227–2302.
2-(4-Nitrophenyl)-4,5-diphenylimidazole (8): 80% yield; mp:
236–237 8C; 1H NMR (500 MHz, CDCl3)
d = 7.35–7.60 (m, 10H, Ar),
8.05–8.30 (m, 4H, Ar); MS (EI) m/z 341 (M+).
2-(3-Nitrophenyl)-4,5-diphenylimidazole (9): 75% yield; mp:
>290 8C; 1H NMR (500 MHz, CDCl3)
d = 7.55–8.95 (m, 14H, Ar),
13.10 (brs, NH); MS (EI) m/z 341 (M+).
2-(4-Methylphenyl)-4,5-diphenylimidazole (10): 93% yield;
mp: 227–228 8C; 1H NMR (500 MHz, CDCl3)
= 2.90 (s, 3H,
d
CH3), 6.80 (d, 2H, Ar), 7.20–7.80 (m, 12H, Ar), 12.60 (brs, NH);
MS (EI) m/z 310 (M+).
2-Ethyl-4,5-diphenylimidazole (11): 10% yield; mp: 226–
228 8C; 1H NMR (500 MHz, CDCl3)
d = 1.24 (t, 3H, CH3), 2.59 (m,