Page 5 of 6
Journal of the American Chemical Society
Stemmler, T. L. Characterization of the Particulate Methane
Press: New York and London, 1968; Vol. 10, pp 247–422.
Monooxygenase Metal Centers in Multiple Redox States by X-
Ray Absorption Spectroscopy. Inorg. Chem. 2006, 45, 8372.
Smith, S. M.; Rawat, S.; Telser, J.; Hoffman, B. M.; Stemmler, T.
L.; Rosenzweig, A. C. Crystal Structure and Characterization of
Particulate Methane Monooxygenase from Methylocystis
Species Strain M. Biochemistry 2011, 50, 10231.
Raghoebarsing; A., A.; Arjan, P.; van de Pas-Schoonen, K. T.;
Smolders; P., A. J.; Ettwig, K. F.; Rijpstra, W. I. C.; Schouten, S.;
Damsté, J. S. S.; Op den Camp, H. J. M.; Jetten, M. S. M.; Strous,
(31)
Halvagar, M. R.; Solntsev, P. V; Lim, H.; Hedman, B.; Hodgson,
K. O.; Solomon, E. I.; Cramer, C. J.; Tolman, W. B. Hydroxo-
Bridged Dicopper(II,III) and -(III,III) Complexes: Models for
Putative Intermediates in Oxidation Catalysis. J. Am. Chem. Soc.
2014, 136, 7269.
1
2
3
4
5
6
7
8
9
(
16)
17)
(32)
(33)
Wright, A. M.; Wu, G.; Hayton, T. W. Structural Characterization
1
0
(
of a Copper Nitrosyl Complex with a {CuNO} Configuration.
J. Am. Chem. Soc. 2010, 132, 14336.
Randall, D. W.; George, S. D.; Holland, P. L.; Hedman, B.;
Hodgson, K. O.; Tolman, W. B.; Solomon, E. I. Spectroscopic
and Electronic Structural Studies of Blue Copper Model
Complexes. 2. Comparison of Three-and Four-Coordinate Cu(II)-
Thiolate Complexes and Fungal Laccase. J. Am. Chem. Soc.
2000, 122, 11632.
Carrier, S. M.; Ruggiero, C. E.; Tolman, W. B.; Jameson, G. B.
Synthesis and Structural Characterization of a Mononuclear
Copper Nitrosyl Complex. J. Am. Chem. Soc. 1992, 114, 4407.
Ruggiero, C. E.; Carrier, S. M.; Antholine, W. E.; Whittaker, J.
W.; Cramer, C. J.; Tolman, W. B. Synthesis and Structural and
Spectroscopic Characterization of Mononuclear Copper Nitrosyl
Complexes: Models for Nitric Oxide Adducts of Copper Proteins
and Copper-Exchanged Zeolites. J. Am. Chem. Soc. 1993, 115,
11285.
Schneider, J. L.; Carrier, S. M.; Ruggiero, C. E.; Young, V. G.;
Tolman, W. B. Influences of Ligand Environment on the
Spectroscopic Properties and Disproportionation Reactivity of
Copper-Nitrosyl Complexes. J. Am. Chem. Soc. 1998, 120,
11408.
Sakhaei, Z.; Kundu, S.; Donnelly, J. M.; Bertke, J. A.; Kim, W.
Y.; Warren, T. H. Nitric Oxide Release via Oxygen Atom
Transfer from Nitrite at Copper (II). Chem. Commun. 2017, 53,
549.
Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A.
J.; Young, V. G.; Que, L.; Tolman, W. B. Synthetic Modeling of
Nitrite Binding and Activation by Reduced Copper Proteins.
Characterization of Copper(I)−Nitrite Complexes That Evolve
Nitric Oxide. J. Am. Chem. Soc. 1996, 118, 763.
Uyeda, C.; Peters, J. C. Selective Nitrite Reduction at
Heterobimetallic CoMg Complexes. J. Am. Chem. Soc. 2013,
135, 12023.
Adam, S. M.; Wijeratne, G. B.; Rogler, P. J.; Diaz, D. E.; Quist,
D. A.; Liu, J. J.; Karlin, K. D. Synthetic Fe/Cu Complexes:
Toward Understanding Heme-Copper Oxidase Structure and
Function. Chem. Rev. 2018, 118, 10840.
Timmons, A. J.; Symes, M. D. Converting between the Oxides of
Nitrogen Using Metal–ligand Coordination Complexes. Chem.
Soc. Rev. 2015, 44, 6708.
M.
A Microbial Consortium Couples Anaerobic Methane
Oxidation to Denitrification. Nature 2006, 440, 918.
(18)
Ettwig, K. F.; Butler, M. K.; Le Paslier, D.; Pelletier, E.;
Mangenot, S.; Kuypers, M. M. M.; Schreiber, F.; Dutilh, B. E.;
Zedelius, J.; de Beer, D.; Gloerich, J.; Wessels, H. J. C. T.; van
Alen, T.; Luesken, F.; Wu, M. L.; van de Pas-Schoonen, K. T.;
Op den Camp, H. J. M.; Janssen-Megens, E. M.; Francoijs, K.;
Stunnenberg, H.; Weissenbach, J.; Jetten, M. S. M.; Strous, M.
Nitrite-Driven Anaerobic Methane Oxidation by Oxygenic
Bacteria. Nature 2010, 464, 543.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(34)
(35)
(19)
Smeets, P. J.; Groothaert, M. H.; Schoonheydt, R. A. Cu Based
Zeolites: A UV–vis Study of the Active Site in the Selective
Methane Oxidation at Low Temperatures. Catal. today 2005,
1
10, 303.
(
20)
21)
Alayon, E. M.; Nachtegaal, M.; Ranocchiari, M.; van Bokhoven,
J. A. Catalytic Conversion of Methane to Methanol over Cu–
mordenite. Chem. Commun. 2012, 48, 404.
(36)
(
Snyder, B. E. R.; Bols, M. L.; Schoonheydt, R. A.; Sels, B. F.;
Solomon, E. I. Iron and Copper Active Sites in Zeolites and Their
Correlation to Metalloenzymes. Chem. Rev. 2018, 118, 2718.
Tomkins, P.; Ranocchiari, M.; van Bokhoven, J. A. Direct
Conversion of Methane to Methanol under Mild Conditions over
Cu-Zeolites and Beyond. Acc. Chem. Res. 2017, 50, 418.
Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.;
Schoonheydt, R. A. Selective Oxidation of Methane by the Bis(μ-
Oxo)Dicopper Core Stabilized on ZSM-5 and Mordenite
Zeolites. J. Am. Chem. Soc. 2005, 127, 1394.
In Reported Dicopper(III) Bis(μ-Oxide) Complex, the Cu−Cu
Distance Is about 2.8 Å and in PMMO, the Cu−Cu Distance Is
about 2.6 Å. We Design This Ligand L so That a Dicopper
Complex Could Be Templated with a Close Cu−Cu Distance.
Ziegler, M. S.; Levine, D. S.; Lakshmi, K. V; Tilley, T. D. Aryl
Group Transfer from Tetraarylborato Anions to an Electrophilic
Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II)
Complexes. J. Am. Chem. Soc. 2016, 138, 6484.
(37)
(38)
(22)
(23)
(24)
(25)
(26)
(27)
(39)
(40)
Ziegler, M. S.; Torquato, N. A.; Levine, D. S.; Nicolay, A.; Celik,
H.; Tilley, T. D. Dicopper Alkyl Complexes: Synthesis,
Structure, and Unexpected Persistence. Organometallics 2018,
(41)
(42)
(43)
(44)
(45)
3
7, 2807.
Chuang, W.-J.; Lin, I.-J.; Chen, H.-Y.; Chang, Y.-L.; Hsu, S. C.
N. Characterization of A New Copper(I)−Nitrito Complex That
Evolves Nitric Oxide. Inorg. Chem. 2010, 49, 5377.
Luo, Y.-R.; Chapter 3: Tabulated BDEs of C–H Bonds. In
Handbook of Bond Dissociation Energies in Organic
Compounds, CRC Press: Boca Raton, 2003.
Gonzalez-De-Castro, A.; Robertson, C. M.; Xiao, J.
Dehydrogenative α-Oxygenation of Ethers with an Iron Catalyst.
J. Am. Chem. Soc. 2014, 136, 8350.
Villacorta, G. M.; Gibson, D.; Williams, I. D.; Lippard, S. J.
Dicopper(I) Tropocoronands: Synthesis, X-Ray Crystal
Structure, and Spectral Properties of Neutral Binuclear Copper(I)
Complexes Bridged by Symmetrically Substituted Alkynes. J.
Am. Chem. Soc. 1985, 107, 6732.
Paul, P. P.; Tyeklar, Z.; Farooq, A.; Karlin, K. D.; Liu, S.;
Zubieta, J. Isolation and X-Ray Structure of a Dinuclear Copper-
Nitrosyl Complex. J. Am. Chem. Soc. 1990, 112, 2430.
Cao, R.; Elrod, L. T.; Lehane, R. L.; Kim, E.; Karlin, K. D. A
Peroxynitrite Dicopper Complex: Formation via Cu–NO and Cu–
O2 Intermediates and Reactivity via O–O Cleavage Chemistry. J.
Am. Chem. Soc. 2016, 138, 16148.
(
28)
29)
(
Tanaka, H.; Oisaki, K.; Kanai, M. Ligand-Free, Copper-
3
Catalyzed Aerobic Benzylic sp C-H Oxygenation. Synlett 2017,
28, 1576.
(30)
Robin, M. B.; Day, P. Mixed Valence Chemistry-A Survey and
Classification. In Advances in Inorganic Chemistry and
Radiochemistry, Emeléus, H. J., Sharpe, A. G., Eds.; Academic
ACS Paragon Plus Environment