Page 4 of 7
4
ligand synthesized in this work, due to the promising characteristics of this ligand in AD models (Fig.3). Over time,
Aβ1-42 shows an increase in ThT fluorescence, reaching its maximum fluorescence at 48 h. Up to 24 h of incubation
both L1 and PBT2 not show any difference in aggregation pattern, however at 48 h L1 shows a significant decrease in
ThT fluorescence intensity, suggesting that the ligand interacts with the peptide to limit the formation of higher MW
fibrils. In the presence of Cu2+, there is no increase in ThT fluorescence, in accordance with results shown previously
that copper stabilizes low molecular weight species.49-50 L1 does not appear to prevent Cu2+ interaction with Aβ1-42
,
suggesting that the Cu-affinity of this derivative is lower than that of the Aβ peptide. While PBT2 does not change
the aggregation pattern of Aβ1-42 under Cu-free conditions, in the presence of Cu2+ a small increase in ThT
fluorescence is obverted, thus showing that PBT2 can influence the Cu-Aβ interaction.
Fig. 3. ThT fluorescence of (A) Aβ1-42 in the presence and absence of ligands; (B) Aβ1-42 with CuCl2 in the presence and
absence of ligands.
Conclusion
In summary, using a click reaction between o-((trimethylsilyl)ethynyl)phenol and 4-(azidomethyl)-N,N-
dimethylaniline, a novel triazole-phenol derivative L1 was synthesized. This triazole-phenol derivative conformed to
Lipinski’s rules and the calculated logBB value for potential blood-brain barrier (BBB) permeability. Metal binding
properties and Aβ interaction properties of this triazole-phenol derivative were studied by UV-vis and a ThT Assay.
The further synthesis and functional studies of similar compounds are underway in our group.
Supplementary data
Supplementary data are available with the article through the journal Web site at
Acknowledgment
Research project supported by Shanxi Scholarship Council of China (2017-037) (C. Z.), the Foundation of
Taiyuan University of Technology (1205-04020203) (C. Z.), the Michael Smith Foundation for Health Research (T.S.)
and Science Without Borders/0711-13-6 CAPES.
References
(1) Mohamed, T.; Shakeri, A.; Rao, P.P. Eur. J. Med. Chem. 2016, 113, 258. doi:10.1016/j.ejmech.2016.02.049.
(2) Jakob-Roetne, R.; Jacobsen, H. Angew. Chem. Int. Ed. 2009, 48, 3030. doi:10.1002/anie.200802808.
(3) Hamley, I.W. Chem. Rev. 2012, 112, 5147. doi:10.1021/cr3000994.
(4) Gratuze, M.; Khoury, N.B. E.; Turgeon, A.; Julien, C.; Marcouiller, F.; Morin, F.; Whittington, R.A.; Marette, A.; Calon, F.; Planel, E.
Neurobiol. Dis. 2017, 98, 1. doi:10.1016/j.nbd.2016.10.004.
(5) Lloret, A.; Fuchsberger, T.; Giraldo, E.; Viña, J. Radical. Bio. Med. 2015, 83, 186. doi:10.1016/j.freeradbiomed.2015.02.028.
(6) Peters, D.G.; Connor, J.R.; Meadowcroft, M.D. Neurobiol. Dis. 2015, 81, 49. doi:10.1016/j.nbd.2015.08.007.
(7) Greenough, M.A.; Camakaris, J.; Bush, A.I. Neurochem. Int. 2013, 62, 540. doi:10.1016/j.neuint.2012.08.014.
(8) Pedersen, J.T.; Chen, S.W.; Borg, C.B.; Ness, S.; Bahl, J.M.; Heegaard, N.H.H.; Dobson, C.M.; Hemmingsen, L.; Cremades, N.; Teilum, K.
J. Am. Chem. Soc. 2016, 138, 3966. doi:10.1021/jacs.5b13577.
(9) Reybier, K.; Ayala, S.; Allies, B.; Rodrigues, J.V.; Rodriguez, S.B.; Penna, G. L.; Collin, F.; Gomes, C.M.; Hureau, C.; Faller, P. Angew.
Chem. Int. Ed. 2016, 55, 1085. doi:10.1002/anie.201508597.
(10) Jiang, T.; Sun, Q.; Chen, S. Prog. Neurobiol. 2016, 147, 1. doi:10.1016/j.pneurobio.2016.07.005.
(11) Santos, M.A.; Chand, K.; Chaves, S. Coord. Chem. Rev. 2016, 327-328, 287. doi:10.1016/j.ccr.2016.04.013.
(12) Bolognesi, M.L.; Cavalli, A.; Valgimigli, L.; Bartolini, M.; Rosini, M.; Andrisano, V.; Recanatini, M.; Melchiorre, C. J. Med. Chem. 2007,
50, 6446. doi:10.1021/jm701225u.
(13) Zhu, Y.; Xiao, K.; Ma, L.; Xiong, B.; Fu, Y.; Yu, H.; Wang, W.; Wang, X.; Hu, D.; Peng, H.; Li, J.; Gong, Q.; Chai, Q.; Tang, X.; Zhang,
H.; Li, J.; Shen, J. Bioorg. Med. Chem. 2009, 17, 1600. doi:10.1016/j.bmc.2008.12.067.
(14) Huang, W.; Lv, D.; Yu, H.; Sheng, R.; Kim, S.C.;Wu, P.; Luo, K.; Li, J.; Hu, Y. Bioorg. Med. Chem. 2010, 18, 5610.
doi:10.1016/j.bmc.2010.06.042.
(15) Marco-Contelles, J.; Leon, R.; de los Rios, C.; Samadi, A.; Bartolini, M.; Andrisano, V.; Huertas, O.; Barril, X.; Luque, F.J.;
Rodriguez-Franco, M.I.; López, B.; López, M.G.; García, A.G.; Carreiras, M. do C.; Villarroya, M. J. Med. Chem. 2009, 52, 2724.
doi:10.1021/jm801292b.
(16) Jones, M.R.; Service, E.L.; Thompson, J.R.; Wang, M.C.; Kimsey, I.J.; DeToma, A.S.; Ramamoorthy, A.; Lim, M.H.; Storr, T.
Metallomics. 2012, 4, 910. doi:10.1039/C2MT20113E.
(17) Jones, M.R.; Dyrager, C.; Hoarau, M.; Korshavn, K.J.; Lim, M,H.; Ramamoorthy, A.; Storr, T. J. Inorg. Biochem. 2016, 158, 131.
doi:10.1016/j.jinorgbio.2016.04.022.
(18) Beck, M.W.; Derrick, J.S.; Kerr, R.A.; Oh, S.B.; Cho, W.J.; Lee, S.J.C.; Ji, Y.; Han, J.; Tehrani, Z.A.; Suh, N.; Kim, S.; Larsen, S.D.; Kim,
K.S.; Lee, J.Y.; Ruotolo, B.T.; Lim, M.H. Nat. Commun. 2016, 7, 13115. doi:10.1038/ncomms13115.
(19) Cherny, R.A.; Atwood, C.S.; Xilinas, M.E.; Gray, D.N.; Jones, W.D.; McLean, C.A.; Barnham, K.J.; Volitakis, I.; Fraser, F.W.;
Kim, Y.S.; Huang, X.D.; Goldstein, L.E.; Moir, R.D.; Lim, J.T.; Beyreuther, K.; Zheng, H.; Tanzi, R.E.; Masters, C.L.; Bush, A.I.
Neuron 2001, 30, 665. doi:10.1016/S0896-6273(01)00317-8.
(20) Ritchie, C.W.; Bush, A.I.; Mackinnon, A.; Macfarlane, S.; Mastwyk, M.; MacGregor, L.; Kiers, L.; Cherny, R.; Li, Q.-X.;
Tammer, A.; Carrington, D.; Mavros, C.; Volitakis, I.; Xilinas, M.; Ames, D.; Davis, S.; Beyreuther, K.; Tanzi, R.E.; Masters, C.L. Arch.
Neurol. 2003, 60, 1685. doi:10.1001/archneur.60.12.1685.