Please do not adjust margins
Journal of Materials Chemistry A
Page 6 of 7
ARTICLE
Journal Name
8
9
Chem. Soc. Rev., 2014, 43, 5183-5191. DOI: 10.1039/C9TA06653E
A. J. Medford and M. C. Hatzell, ACS Catal., 2017, 7, 2624-
2643.
Computational Details
The first-principles calculations were performed by using the Vienna
ab initio simulation package (VASP) based on the spin-polarized
density functional theory.57,58 The generalized gradient
approximation (GGA) of Perdew-Burke-Ernzerh (PBE) was adopted
for the exchange-correlation function.59 And the electron-ion
interaction was described by the projected augmented wave (PAW)
method.60 The electronic wave functions were expanded by a plane
wave basis set with an energy cutoff of 450 eV. The van der Waals
interactions were described using DFT-D3 method with Becke-
Jonson damping.61 A 2 × 2 × 1 supercell PCN contains 32 N atoms
and 24 C atoms was selected as the slab model. In order to avoid
the interaction between two layers, the vacuum layers were set to
be 15 Å. During the calculations, the Brillouin zones were sampled
by a 3 × 3 × 1 grid centered at the gamma (Γ) point, all the atoms
were fully relaxed until the total energy variation was smaller than
10-5 eV, and the force on each atom was less than 0.02 eV/ Å. The
Gibbs free energy change (∆G) in the simulated pathway was
calculated as follows:
10 X. Chen, N. Li, Z. Kong, W-J. Ong and X. Zhao, Mater. Horiz.,
2018, 5, 9-27.
11 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, J. Nat. Mater.,
2013, 12, 836.
12 T. Oshikiri, K. Uenoand H. Misawa, Angew. Chem. Int. Ed.,
2014, 53, 9802.
13 M. Ali, F. Zhou, K. Chen, C. Kotzur, C.. Xiao, L. Bourgeois, X.
Zhang and D. R. MacFarlane, Nat. Commun., 2016, 7, 11335.
14 K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N.
Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C.
Seefeldt and P. W. King, Science, 2016, 352, 448-450.
15 J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y.
Li, H. Zhou, S. Jiang and S. Wang, Chem, 2019, 5, 617-633.
16 L. F. Greenlee, J. N. Renner and S. L. Foster, ACS Catal., 2018,
8, 7820-7827.
17 S. D. Minteer, P. Christopher and S. Linic, ACS Energy Lett.,
2019, 4, 163-166.
18 C. Hu, X. Chen, J. Jin, Y. Han, S. Chen, H. Ju, J. Cai, Y. Qiu, C.
Gao, C. Wang, Z. Qi, R. Long, L. Song, Z. Liu and Y. Xiong, J.
Am. Chem. Soc., 2019, 141, 7807.
19 G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc., 1977, 99,
7189-7193.
∆G = ∆E + ∆EZPE – T∆S
20 H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc., 2015,
137, 6393-6399.
21 S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang,
H. Chen and J. Ye, Adv. Mater., 2017, 29, 1701774.
22 Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F.
Teng, L. Wu, C-H. Tung, D. O’Hare and T. Zhang, Adv. Mater.,
2017, 29, 1703828.
23 N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi,
H. Ju, C. Wang, X. Wu, L. Song, J. Zhu and Y. Xiong, J. Am.
Chem. Soc., 2018, 140, 9434-9443.
Where, ∆E is the adsorption energy difference obtained directly
from DFT calculations, ∆EZPE is the difference in zero point energy
computed from the vibrational frequencies, T is the temperature
(298.15 K), and ∆S is the entropy difference between the adsorbed
state and gas state. As the vibrational entropy of the adsorbed state
is small, it is neglected. While the entropies for the gas molecules
are taken from the NIST database.62
24 L. Tao, M. Qiao, R. Jin, Y. Li, Z. Xiao, Y. Wang, N. Zhang, C. Xie,
Q. He, D. Jiang, G. Yu, Y. Li and S. Wang, Angew. Chem. Int.
Ed., 2019, 58, 1019-1024.
25 X. Yang, A. Wang, B. Qiao, J. Li, J. Liu and T. Zhang, Acc.
Chem. Res., 2013, 46, 1740-1748.
Conflicts of interest
There are no conflicts to declare.
26 H. Tao, C. Choi, L. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao,
H. Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu and Z. Sun,
Chem, 2019, 5, 204-214.
27 J. Wang, Z. Li, Y. Wu and Y. Li, Adv. Mater., 2018, 30,
1801649.
28 W. Chen, J. Pei, C. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J.
Dong, S. Tian, W. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan,
Z. Zhuang, C. Chen, Qi. Peng, D. Wang and Y. Li, Angew.
Chem. Int. Ed., 2017, 56, 16086-16090.
Acknowledgements
This work was supported by National Key R&D Program of
China (2017YFA0700104), the National Natural Science
Foundation of China (21722104, 21671032, 21331007), and
Natural Science Foundation of Tianjin City of China
(18JCJQJC47700, 17JCQNJC05100).
29 Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si
and J. Zeng, Adv. Mater., 2018, 30, 1803498.
30 B. Wang, H. Cai and S. Shen, Small Methods, 2019, 1800447.
31 C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim and Y. Jung, ACS
Catal., 2018, 8, 7517-7525.
32 X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D.
Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X.
Pan and X. Bao, Science, 2014, 344, 616-619.
33 W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L.
Jin, X. Zheng, W. Che, Q. Liu, T. Yao and S. Wei, Angew.
Chem. Int. Ed., 2017, 56, 9312-9317.
34 X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu
and Y. Xie, Adv. Mater., 2016, 28, 2427-2431.
Notes and references
1
V. Rosca, M. Duca, M. T. Groot and M. T. M. Koper, Chem.
Rev., 2009, 109, 2209-2244.
2
3
4
H. Jia and E. A. Quadrelli, Chem. Soc. Rev., 2014, 43, 547-564.
K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A.
Carlsson, S. Dahl, C. H. Christensen and J. K. Nørskov, Science,
2005, 307, 555-558.
5
6
7
S. Licht, B. Cui, B. Wang, F. Li, J. Lau and S. Liu, Science, 2014,
345, 637-640.
J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2017,
139, 4390-4398.
M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S.
Matsuishi, T. Yokoyama, S-W. Kim, M. Hara and H. Hosono,
Nat. Chem., 2012, 4, 934-940.
35 Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. Li, Y. Han. Y.
Chen and S. Qiao, J. Am. Chem. Soc., 2017, 139, 3336-3339.
36 L. Fan, P. Liu, X. Yan, L. Gu, Z. Yang, H. Yang, S. Qiu and X.
Yao, Nat. Commun., 2016, 7, 10667.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins