10.1002/anie.201812222
Angewandte Chemie International Edition
COMMUNICATION
[2]
[3]
[4]
[5]
[6]
T. Someno, S. Kunimoto, H. Nakamura, H. Naganawa, D. Ikeda, J.
Antibiot. 2005, 58, 56-60.
14041-14044; b) H. Y. Wang, C. J. Simmons, S. A. Blaszczyk, P. G.
Balzer, R. Luo, X. Duan, W. Tang, Angew. Chem. Int. Ed. 2017, 56,
15698-15702; Angew. Chem. 2017, 129, 15904-15908; c) H. Yao, S.
Zhang, W.-L. Leng, M.-L. Leow, S. Xiang, J. He, H. Liao, K. Le Mai Hoang,
X.-W. Liu, ACS Catal. 2017, 7, 5456-5460; d) A. Sau, M. C. Galan, Org.
Lett. 2017, 19, 2857-2860; e) R. S. Babu, M. Zhou, G. A. O'Doherty, J.
Am. Chem. Soc. 2004, 126, 3428-3429; f) H. Kim, H. Men, C. Lee, J. Am.
Chem. Soc. 2004, 126, 1336-1337.
J. Qian-Cutrone, J. M. Kolb, K. McBrien, S. Huang, D. Gustavson, S. E.
Lowe, S. P. Manly, J. Nat. Prod. 1998, 61, 1379-1382.
K. Ströch, A. Zeeck, N. Antal, H.-P. Fiedler, J. Antibiot. 2005, 58, 103-
110.
N. Kawamura, R. Sawa, Y. Takahashi, T. Sawa, N. Kinoshita, H.
Naganawa, M. Hamada, T. Takeuchi, J. Antibiot. 1995, 48, 1521-1524.
B. Kalyon, G. Y. A. Tan, J. M. Pinto, C. Y. Foo, J. Wiese, J. F. Imhoff, R.
D. Süssmuth, V. Sabaratnam, H. P. Fiedler, J. Antibiot. 2013, 66, 609-
616.
[15] For selected examples on the total synthesis using transition metal
catalysis: a) X. Zhang, Y. Zhou, J. Zuo, B. Yu, Nat. Commun. 2015, 6,
5879-5888; b) S. O. Bajaj, E. U. Sharif, N. G. Akhmedov, G. A. O'Doherty,
Chem. Sci. 2014, 5, 2230-2234; c) B. Wu, M. Li, G. A. O’Doherty, Org.
Lett. 2010, 12, 5466-5469.
[7]
[8]
[9]
K. A. Shaaban, C. Stamatkin, C. Damodaran, J. Rohr, J. Antibiot. 2010,
64, 141.
L. Zhu, A. Luzhetskyy, M. Luzhetska, C. Mattingly, V. Adams, A.
Bechthold, J. Rohr, ChemBioChem. 2007, 8, 83-88.
[16] a) M. Kim, S. Kang, Y. H. Rhee, Angew. Chem. Int. Ed. 2016, 55, 9733-
9737; Angew. Chem. 2016, 128, 9885-9889; b) W. Lim, J. Kim, Y. H.
Rhee, J. Am. Chem. Soc. 2014, 136, 13618-13621; c) For a related
reference introducing N,O-acetal formation, see: H. Kim, Y. H. Rhee,
Synlett. 2012, 23, 2875-2879.
For selected reviews on 2-deoxy-glycoside synthesis: a) C. S. Bennett,
M. C. Galan, Chem. Rev. 2018, 118, 7931-7985l b) C. S. Bennett,
Selective Glycosylations: Synthetic Methods and Catalysts, Wiley-VCH
Weinheim, 2017; c) A. Z. Aljahdali, P. Shi, Y. Zhong, G. A. O’Doherty,
Adv. Carbohydr. Chem. Biochem. 2013, 69, 55-123; d) A. Borovika, P.
Nagorny, J. Carbohydr. Chem. 2012, 31, 255-283; e) D. Hou, T. L.
Lowary, Carbohydr. Res. 2009, 344, 1911-1940.
[17] For our recent studies using ene-alkoxyallenes with N-heterocycle
nucleophiles, see: a) S. Kang, S. H. Jang, J. Lee, D. G. Kim, M. Kim, W.
Jeong, Y. H. Rhee, Org. Lett. 2017, 19, 4684-4687; b) S. H. Jang, H. W.
Kim, W. Jeong, D. Moon, Y. H. Rhee, Org. Lett. 2018, 20, 1248-1251.
[18] For a related report on the Pd-catalyzed asymmetric alkylation of gem-
diacetate, see: B. M. Trost, C. B. Lee, J. Am. Chem. Soc. 2001, 123,
3671-3686.
[10] Y. Guo, G. A. Sulikowski, J. Am. Chem. Soc. 1998, 120, 1392-1397.
[11] For selected examples that introduce new strategies based upon
substrate-controlled glycosylations, see: a) D. Lloyd, C. S. Bennett,
Chem. Eur. J. 2018, 24, 7610-7614; b) S. Kusumi, S. Tomono, S.
Okuzawa, E. Kaneko, T. Ueda, K. Sasaki, D. Takahashi, K. Toshima, J.
Am. Chem. Soc. 2013, 135, 15909-15912; c) H. Tanaka, S. Yamaguchi,
A. Yoshizawa, M. Takagi, K. Shin-ya, T. Takahashi, Chem. - Asian J.
2010, 5, 1407–1424; d) Y. Li, Y. Yang, B. Yu, Tetrahedron Lett. 2008, 49,
3604-3608.
[19] For recent examples using Achmatowicz rearrangement for the linear
synthesis of 2,3,6-trideoxyoligosaccharides, see: a) M. Zhou, G. A.
O’Doherty, Org. Lett. 2008, 10, 2283-2286; b) W. Song, Y. Zhao, J. C.
Lynch, H. Kim, W. Tang, Chem. Commun. 2015, 51, 17475-17478.
[20] When smaller amount of alcohol was used, the reaction was slower
presumably due to the dual coordination of the Pd to the allene and olefin.
[21] J. P. Issa, C. S. Bennett, J. Am. Chem. Soc. 2014, 136, 5740-5744.
[22] For the complex oligosaccharides shown in Scheme 3, the 2nd generation
Grubbs catalyst (G2) showed higher yield than the 1st generation Grubbs
catalyst (G1).
[12] For selected examples describing the total synthesis of deoxyglycoside
natural products using this strategy, see: a) X. Yang, B. Fu, B. Yu, J. Am.
Chem. Soc. 2011, 133, 12433-12435; b) B. Yu, P. Wang, Org. Lett. 2002,
4, 1919-1922; c) W. R. Roush, C. E. Bennett, J. Am. Chem. Soc. 2000,
122, 6124-6125.
[23] This structural pattern is also found in natural product of the
Saquayamycin family. For a reference, see: T. Uchida, M. Imoto, Y.
Watanabe, K. Miura, T. Dobashi, N. Matsuda, T. Sawa, H. Naganawa,
M. Hamada, T. Takeuchi, H. Umezawa, J. Antibiot. 1985, 38, 1171–1181.
[24] K. Herold, F. A. Gollmick, I. Groth, M. Roth, K.-D. Menzel, U. Möllmann,
U. Gräfe, C. Hertweck, Chem. Eur. J. 2005, 11, 5523-5530.
[13] For selected review on transition metal catalyzed glycosylation: a) X. Li,
J. Zhu, Eur. J. Org. Chem. 2016, 4724-4767; b) M. J. McKay, H. M.
Nguyen, ACS Catal. 2012, 2, 1563-1595.
[14]
For selected examples on the transition metal-catalyzed glycosylation:
a) C. Palo-Nieto, A. Sau, M. C. Galan, J. Am. Chem. Soc. 2017, 139,
This article is protected by copyright. All rights reserved.