A R T I C L E S
Allan et al.
1
K): δ 11.4 (C
5
Me
5
), 24.2, 28.6 (NCMe
), 69.9 (NCMe
), 124.1, 129.5 (Ar C-H), 137.9, 139.7,
oxazoline). Anal. Calcd for C33 Zr:
2
), 30.9, 31.7 (CMe
3
), 34.3,
0.26 g, 87%. H NMR (400 MHz, C
7
D
5
8
): δ 1.13 (s, 9H, CMe
3
),
2
3
1
1
5.8 (CMe
3
), 45.5, 49.0 (Zr-NMe
), 119.7 (C Me
), 169.0 (C
2
2
), 78.1 (OCH
2
),
1.57 (s, 9H, CMe ), 1.85 (s, 15H, C Me ), 2.78 (s, 6H, Zr-NMe ),
3
5
2
3
13.5 (Ar C
65.8 (Ar C
q
5
5
3.89 (dd, 1H, OCH oxazoline, J ) 10 Hz, J ) 8 Hz), 4.40
2
HH
HH
3 3
q
q
55
H N
O
3 2
(dd, 1H, NCH oxazoline, J ) 10 Hz, J ) 8 Hz), 5.50 (t, 1H,
2 3
HH
HH
C, 64.24; H, 8.98; N, 6.81. Found: C, 64.03; H, 8.82; N, 6.32. Single
crystals of 1b suitable for X-ray diffraction analysis were obtained
from a saturated solution from diethyl ether at ambient temperature.
OCH oxazoline, J ) 10 Hz, J ) 10 Hz), 6.57 (d, 1H, Ar
2
HH
HH
3
3
3
C-H, JHH ) 7 Hz), 7.08 (dd, 1H, Ar C-H, JHH ) 7 Hz, JHH ) 7
3
3
Hz), 7.17 (t, 1H, Ar C-H, JHH ) 7 Hz), 7.38 (d, 1H, Ar C-H, JHH
1
n
(S
Zr,S
C
)-[Cp*ZrL (NH Bu)
2
], 1f. An NMR tube was charged
4
)
7 Hz), 7.68 (d, 1H, Ar C-H, JHH ) 3 Hz), 7.91 (d, 1H, Ar C-H,
13 1
n
with 1a (0.02 g, 0.03 mmol), BuNH
benzene-d (0.6 mL). The yellow solution was analyzed by NMR
spectroscopy. H NMR (400 MHz, C
BuNH ), 0.83 (t, 18H, CH
2
(0.02 g, 0.3 mmol), and
4
J
HH ) 3 Hz) ppm. C{ H} NMR (100.6 MHz, C
Me ), 30.9, 32.1 (NCMe ), 31.1, 31.9 (CMe ), 36.2, 39.3 (CMe
2.3 (Zr-NMe ), 74.1 (OCH ), 74.3 (NCH), 111.5 (Ar C ), 119.3
Me ), 121.7 (Ar C-H of metalated Ph), 123.9 (Ar C-H), 126.4,
26.9 (Ar C-H of metalated Ph), 130.5 (Ar C-H), 138.2, 140.7 (Ar
), 138.8 (Ar C-H of metalated Ph), 151.2, 166.1 (Ar C ), 169.2
oxazoline), 189.8 (Zr-CAr) ppm. Anal. Calcd for C35 Zr:
C, 67.80; H, 7.80; N, 4.52. Found: C, 67.41; H, 7.33; N, 3.60.
Cp*′Zr(NMe )(Me PhOx)], 4b. An NMR tube was charged
with 1b (0.02 g, 0.03 mmol) and benzene-d (0.6 mL). The yellow
solution was heated at 90 °C for 48 h and then analyzed by NMR
7
D
8
): δ 11.8
6
(C
5
5
2
3
3
),
1
6
D ): δ 0.47 (br s, 16H,
6
4
2
2
q
3
2
3
of excess amine, JHH ) 7 Hz), 0.86 (t,
(
C
5
5
3
3
3
4
CMe
1
H, CH
H, 2CH
), 1.45 (m, 2H, CH
.95 (s, 15H, C Me ), 2.05 (m, 1H, NHCH
CH of excess amine), 3.21 (m, 1H, NHCH
3
, JHH ) 7 Hz), 0.97 (t, 3H, CH
), 1.21 (m, 32H, 2CH of excess amine), 1.35 (s, 9H,
), 1.55 (m, 2H, CH ), 1.71 (s, 9H, CMe ),
), 2.47 (br m, 16H,
), 3.47 (dd, 1H, NH,
), 3.75 (dd, 1H,
3
, JHH ) 7 Hz), 1.10 (m,
1
2
2
C
q
q
3
2
2
3
(C
q
48 2 2
H N O
5
5
2
2
2
[
2
2
3
3
J
HH ) 9 Hz, JHH ) 9 Hz), 3.59 (m, 2H, NHCH
2
2
3
6
OCH
2
oxazoline, JHH ) 9 Hz, JHH ) 3 Hz), 4.04 (t, 1H, OCH
2
2
3
3
oxazoline, JHH ) 9 Hz, JHH ) 9 Hz), 4.71 (t, 1H, NH, JHH ) 8
1
3
spectroscopy. H NMR (400 MHz, C
.20 (s, 3H, CH ), 1.47 (s, 9H, CMe ), 1.61 (s, 9H, CMe
1.90, 2.04, 2.09 (all s, 3H, 4 × CH of Cp*′), 2.19 (d, 6H, HNMe
2.82 (s, 6H, Zr-NMe ), 3.22 (d, 1H, Zr-CH
d, 1H, OCH oxazoline, JHH ) 7 Hz), 3.55 (d, 1H, Zr-CH
13 Hz), 3.62 (d, 1H, OCH oxazoline, JHH ) 7 Hz), 7.48 (d,
4
6
D
6
): δ 0.99 (s, 3H, CH
), 1.83,
),
, JHH ) 13 Hz), 3.54
3
),
Hz), 4.94 (dd, 1H, NCHPh oxazoline, JHH ) 9 Hz, VHH ) 3 Hz),
1
3
3
3
6
1
.83 (m, 2H, Ar C-H of Ph), 6.91 (m, 3H, Ar C-H of Ph), 7.75 (d,
H, Ar C-H, JHH ) 3 Hz), 8.09 (d, 1H, Ar C-H, JHH ) 3 Hz)
4
4
3
2
2
13
1
2
2
ppm. C{ H} NMR (100.6 MHz, C
and excess amine CH ), 14.2 (CH
CH ), 20.8 (CH ), 30.5, 31.7 (CMe
excess amine CH ), 38.9 (HNMe ), 39.0, 39.2 (CH
amine CH ), 50.3, 50.6 (CH ), 70.4 (NCHPh oxazoline), 74.9
OCH oxazoline), 111.1 (Ar C
6
D
6
): δ 11.4 (C
), 20.3 (CH and excess amine
), 34.4, 35.8 (CMe ), 36.5
), 42.3 (excess
5 5 3
Me ), 14.1 (CH
2
2
(
2
2
, JHH
3
3
2
2
)
1
2
2
2
3
3
4
H, Ar C-H, JHH ) 3 Hz), 8.19 (d, 1H, Ar C-H, JHH ) 3 Hz)
13 1
(
2
2
2
ppm. C{ H} NMR (100.6 MHz, C
(C Me ), 30.3, 31.7 (NCMe ), 30.5, 32.2 (CMe
39.1 (HNMe ), 41.8 (Zr-NMe ), 40.6 (Zr-CH ), 65.8 (NCMe
(OCH ), 104.6 (Ar C ), 115.9, 116.4, 117.3, 119.1, 119.8 (C
6
D
6
): δ 10.1, 10.8, 11.0, 11.4
), 35.7, 35.8 (CMe ),
), 77.8
Me ),
), 169.3 (C
2
2
(
2
q
), 117.9 (C
5
Me
5
), 123.6, 126.0,
),
5
4
2
3
3
1
1
28.3, 129.2, 130.4 (Ar C-H), 137.6, 140.1, 142.8, 166.0 (Ar C
q
2
2
2
2
70.9 (C
q
oxazoline) ppm.
)-[Cp*ZrL (NHCH
2
q
5
4
2
(
S
Zr,S
C
2
CMe
2
CH
2
CHdCH
2
)(NMe
2
)-
121.7, 123.0 (Ar C-H), 124.9, 136.5, 140.6 (Ar C
q
q
(
0
PhPhOx)], 1g. An NMR tube was charged with 1a (0.02 g,
.03 mmol), 2a (0.003 g, 0.03 mmol), and benzene-d (0.6 mL).
The yellow solution was analyzed by NMR spectroscopy. H NMR
400 MHz, C ): δ 0.09 (br s, 1H, HNMe ), 1.01 (s, 3H, CH ),
), 1.38 (s, 9H, CMe ), 1.73 (s, 9H, CMe ), 1.97 (s,
, JHH ) 13 Hz, JHH ) 7 Hz),
oxazoline).
Hydroamination Procedure. The precatalyst (10 mg, 15-16
µmol), substrate (18-38 mg, 150-160 µmol), and internal standard,
ferrocene (4 mg, 22 µmol), were weighed into vials in a glovebox.
6
1
(
6
D
6
2
3
1
1
2
.03 (s, 3H, CH
5H, C Me ), 2.05 (dd, 1H, CH
.20 (s, 6H, HNMe
3
3
2
3
8 8
Toluene-d (600 mg, 0.64 mL) or THF-d (634 mg, 0.64 mL) was
3
5
5
2
used to mix the contents of the vials and transfer the solution to a
J. Young NMR tube, which was sealed and shaken vigorously.
NMR spectra at calibrated temperatures were recorded at appropri-
ate intervals (typically 5-15 min), and the data processing and
calculation of N
and co-workers.
2
3
2
), 2.31 (dd, 1H, CH , JHH ) 13 Hz, JHH ) 7
3
2
Hz), 2.37 (s, 6H, Zr-NMe ), 2.84 (t, 1H, NH, JHH ) 13 Hz), 3.29
2
3
3
(
3
1
d, 1H, CH
2
, JHH ) 12 Hz), 3.36 (d, 1H, CH
2
, JHH ) 12 Hz),
2
3
.72 (dd, 1H, OCH
H, OCH oxazoline, JHH ) 9 Hz, JHH ) 9 Hz), 4.71 (dd, 1H,
2
oxazoline, JHH ) 9 Hz, JHH ) 3 Hz), 4.02 (t,
t
2w3,e7r8e performed according to the method of Marks
2
3
2
3
3
NCHPh oxazoline, JHH ) 9 Hz, JHH ) 3 Hz), 5.10 (m, 2H,
CHdCH ), 6.01 (m, 1H, CHdCH ), 6.75 (m, 2H, Ar C-H of Ph),
.91 (m, 3H, Ar C-H of Ph), 7.76 (d, 1H, Ar C-H, JHH ) 3 Hz),
Acknowledgment. We thank the EPSRC for financial support
including an Advanced Research Fellowship for D.J.F. The Oxford
Diffraction Gemini XRD system was obtained through the Science
City Advanced Materials project: Creating and Characterising Next
Generation Advanced Materials project, with support from Advan-
tage West Midlands (AWM) and part funded by the European
Regional Development Fund (ERDF).
2
2
4
6
8
4
13
1
.16 (d, 1H, Ar C-H, JHH ) 3 Hz) ppm. C{ H} NMR (100.6
MHz, C
6
D
6
): δ 11.4 (C
5.9, 36.1 (CMe ), 38.9 (HNMe
1.0 (CH ), 70.5 (NCHPh oxazoline), 75.2 (OCH
), 116.3 (dCH ), 118.4 (C Me ), 123.7, 126.6, 128.9, 129.3,
30.4 (Ar C-H), 137.0 (dCH), 137.5, 140.1, 142.8, 143.0, 165.7
), 171.0 (C oxazoline) ppm.
)-[Cp*Zr(NMe )(Ph′PhOx)], 4a. A J. Young ampule was
5
Me
5
), 25.0, 26.0 (CH
3
), 30.4, 31.7 (CMe
3
),
3
6
3
2
), 45.3 (CH
2
), 45.4 (Zr-NMe
2
oxazoline), 111.1
2
),
2
(Ar C
q
2
5
5
1
(
Ar C
q
q
Supporting Information Available: Kinetic, Eyring, and
Arrhenius plots for hydroamination reactions; crystallographic
data for 1b in CIF format; NMR spectra of complexes. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(SZr,S
C
2
charged with 1a (0.32 g, 0.5 mmol). Toluene (10 mL) was added,
and the resulting yellow solution was heated at 90 °C for 4 d. The
reaction vessel was allowed to cool to ambient temperature and
the volatiles were removed in vacuo. The yellow oily residue was
dissolved in pentane and dried in vacuo to remove residual toluene,
yielding the title compound as a pale orange microcrystalline solid:
JA106588M
1
5320 J. AM. CHEM. SOC. 9 VOL. 132, NO. 43, 2010