10.1002/asia.201900364
Chemistry - An Asian Journal
FULL PAPER
(s); IR (KBr): 3424, 2172, 2111, 1635, 1434, 1274, 1155, 546; elemental
analysis calcd (%) for C8H15N7O: C 42.66, H 6.71, N 43.53; found: C 42.62,
H 6.78, N 43.49.
[2]
Y. Ishikawa and M. J. McQuaid, J. Mol. Struct. THEOCHEM 2007, 818,
119-124.
[3]
[4]
W. Daimon, Y. Gotoh and I. Kimura, J. Propul. Power 1991, 7, 946-952.
O. d. Bonn, A. Hammerl, T. M. Klapötke, P. Mayer, H. Piotrowski and H.
Zewen, Z. Anorg. Allg. Chem. 2001, 627, 2011-2015.
S. Pichon, L. Catoire, N. Chaumeix and C. Paillard, J. Propul. Power
2005, 21, 1057-1061.
IL-4a: colorless liquid; 88.17% yield; 1H NMR (400 MHz, D2O) δ 3.95 (t,
J=5.5 Hz, 2H), 3.69-3.52 (m, 2H), 3.52-3.32 (m, 4H), 3.13 (s, 3H), 2.01-
1.80 (m, 4H), 1.79-1.57 (m, 2H); 13C NMR (101 MHz, D2O) δ 62.02 (s),
61.33 (s), 48.21 (s), 44.11 (s), 20.43 (s), 19.54 (s); IR (KBr): 3432, 2967,
2405, 2141, 1760, 1375, 822, 556; elemental analysis calcd (%) for
C8H17N5O3: C 41.55, H 7.41, N 30.28; found: C 41.49, H 7.44, N 30.25.
IL-4b: colorless liquid; 88.19% yield; 1H NMR (400 MHz, D2O) δ 3.93 (t,
J=5.7 Hz, 2H), 3.62-3.52 (m, 2H), 3.50-3.31 (m, 4H), 3.11 (s, 3H), 1.98-
1.82 (m, 4H), 1.77-1.57 (m, 2H); 13C NMR (101 MHz, D2O) δ 120.04 (s),
62.06 (s), 61.36 (s), 48.29 (s), 44.14 (s), 20.46 (s), 19.58 (s); IR (KBr):
3464, 2233, 2138, 1638, 1465, 1304, 529; elemental analysis calcd (%)
for C10H17N7: C 51.05, H 7.28, N 41.67; found: C 51.01, H 7.37, N 41.62.
IL-4c: colorless liquid; 88.03% yield; 1H NMR (400 MHz, D2O) δ 3.92 (t,
J=5.6 Hz, 2H), 3.65-3.51 (m, 2H), 3.50-3.28 (m, 4H), 3.10 (s, 3H), 1.97-
1.76 (m, 4H), 1.75-1.50 (m, 2H); 13C NMR (101 MHz, D2O) δ 116.22 (s),
61.99 (s), 61.29 (s), 48.22 (s), 44.08 (s), 20.39 (s), 19.51 (s); IR (KBr):
3469, 2174, 2105, 1635, 1429, 1269, 1154, 547; elemental analysis calcd
(%) for C9H17N7O: C 45.18, H 7.16, N 40.98; found: C 45.12, H 7.23, N
40.93.
IL-5a: white solid; 88.11% yield; 1H NMR (400 MHz, D2O) δ 4.16-3.91 (m,
6H), 3.76-3.67 (m, 2H), 3.66-3.47 (m, 4H), 3.28 (s, 3H); 13C NMR (101
MHz, D2O) δ 62.91 (s), 60.34 (s), 47.49 (s), 43.97 (s); IR (KBr): 3429, 2959,
2400, 2117, 1764, 1382, 825, 555; elemental analysis calcd (%) for
C7H15N5O4: C 36.05, H 6.48, N 30.03; found: C 36.01, H 6.59, N 29.95.
IL-5b: colorless liquid; 88.04% yield; 1H NMR (400 MHz, D2O) δ 4.13-3.94
(m, 6H), 3.76-3.67 (m, 2H), 3.66-3.48 (m, 4H), 3.27 (s, 3H); 13C NMR (101
MHz, D2O) δ 120.08 (s), 62.94 (s), 60.37 (s), 47.58 (s), 44.01 (s); IR (KBr):
3455, 2237, 2137, 1638, 1473, 1309, 1128, 881, 529; elemental analysis
calcd (%) for C9H15N7O: C 45.56, H 6.37, N 41.32; found: C 45.53, H 6.46,
N 41.23.
[5]
[6]
[7]
[8]
[9]
P. D. McCrary, P. A. Beasley, S. A. Alaniz, C. S. Griggs, R. M. Frazier and
R. D. Rogers, Angew. Chem. Int. Ed. 2012, 124, 9922-9925.
H. Kang, J. Won, S. W. Baek and S. Kwon, Combust. Flame. 2017, 181,
149-156.
X. Weng, C. Tang, J. Li, Q. Zhang and Z. Huang, Combust. Flame. 2018,
194, 464-471.
Q. Zhang and J. n. M. Shreeve, Chem. Eur. J. 2013, 19, 15446-15451.
[10] Q. Zhang and J. n. M. Shreeve, Chem. Rev. 2014, 114, 10527-10574.
[11] E. Sebastiao, C. Cook, A. Hu and M. Murugesu, J. Mater. Chem. A 2014,
2, 8153-8173.
[12] B. Wang, L. Qin, T. Mu, Z. Xue and G. Gao, Chem. Rev. 2017, 117, 7113-
7131.
[13] K. Wang, Y. Zhang, D. Chand, D. A. Parrish and J. n. M. Shreeve, Chem.
Eur. J. 2012, 18, 16931-16937.
[14] S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau and
G. Drake, Energ. Fuel. 2008, 22, 2871-2872.
[15] S. Schneider, T. Hawkins, M. Rosander, J. Mills, G. Vaghjiani and S.
Chambreau, Inorg. Chem. 2008, 47, 6082-6089.
[16] Y.-H. Joo, H. Gao, Y. Zhang and J. n. M. Shreeve, Inorg. Chem. 2010,
49, 3282-3288.
[17] Y. Jin, B. Wang, W. Zhang, S. Huang, K. Wang, X. Qi and Q. Zhang,
Chem. Eur. J. 2018, 24, 4620-4627.
[18] Y. Yuan, Y. Zhang, L. Liu, N. Jiao, K. Dong and S. Zhang, RSC Adv. 2017,
7, 21592-21599.
[19] V. K. Bhosale and P. S. Kulkarni, New J. Chem. 2017, 41, 1250-1258.
[20] Y. Wang, S. Huang, W. Zhang, T. Liu, X. Qi and Q. Zhang, Chem. Eur. J.
2017, 23, 12502-12509.
IL-5c: colorless liquid; 87.93% yield; 1H NMR (400 MHz, D2O) δ 4.12-3.91
(m, 6H), 3.73-3.66 (m, 2H), 3.64-3.46 (m, 4H), 3.25 (s, 3H); 13C NMR (101
MHz, D2O) δ 116.25 (s), 62.89 (s), 60.32 (s), 47.47 (s), 43.96 (s); IR (KBr):
3489, 2174, 2115, 1633, 1438, 1271, 1128, 550; elemental analysis calcd
(%) for C8H15N7O2: C 39.83, H 6.27, N 40.64; found: C 39.77, H 6.35, N
40.59.
[21] R. Fareghi-Alamdari, F. Ghorbani-Zamani and N. Zekri, RSC Adv. 2016,
6, 26386-26391.
[22] H. Gao, Y. H. Joo, B. Twamley, Z. Zhou and J. n. M. Shreeve, Angew.
Chem. Int. Ed. 2009, 48, 2792-2795.
[23] L. He, G. H. Tao, D. A. Parrish and J. n. M. Shreeve, Chem. Eur. J. 2010,
16, 5736-5743.
[24] Y. Zhang, H. Gao, Y. H. Joo and J. n. M. Shreeve, Angew. Chem. Int. Ed.
2011, 50, 9554-9562.
Acknowledgements
[25] Q. Zhang, P. Yin, J. Zhang and J. n. M. Shreeve, Chem. Eur. J. 2014, 20,
6909-6914.
This work was supported by the National Natural Science
Foundation of China (21703218), the Shenzhen Science and
Technology Innovation Committee (JCYJ20151013162733704),
Economic, Trade and Information Commission of Shenzhen
Municipality through the Graphene Manufacture Innovation
Center [201901161514] and the Thousand Talents Plan (Youth).
[26] S. Huang, X. Qi, W. Zhang, T. Liu and Q. Zhang, Chem. Asian J. 2015,
10, 2725-2732.
[27] W. Zhang, X. Qi, S. Huang, J. Li and Q. Zhang, J. Mater. Chem. A 2015,
3, 20664-20672.
[28] T. Liu, X. Qi, S. Huang, L. Jiang, J. Li, C. Tang and Q. Zhang, Chem.
Commun. 2016, 52, 2031-2034.
[29] S. Schneider, T. Hawkins, Y. Ahmed, M. Rosander, L. Hudgens and J.
Mills, Angew. Chem. Int. Ed. 2011, 123, 6008-6010.
[30] S. Li, H. Gao and J. n. M. Shreeve, Angew. Chem. Int. Ed. 2014, 53,
2969-2972.
Keywords: Hypergolic • Propellant • Azide-functionalized • Ionic
liquids • Ignition delay time
[31] D. Chand, J. Zhang and J. n. M. Shreeve, Chem. Eur. J. 2015, 21, 13297-
13301.
Author Contributions
[32] W. Zhang, X. Qi, S. Huang, J. Li, C. Tang, J. Li and Q. Zhang, J. Mater.
Chem. A 2016, 4, 8978-8982.
[33] T. Liu, J. Qi, B. Wang, Y. Jin, C. Yan, Y. Wang and Q. Zhang, Chem. Eur.
J. 2018.
§These authors contributed equally.
[34] X. Li, H. Huo, H. Li, F. Nie, H. Yin and F.-X. Chen, Chem. Commun. 2017,
53, 8300-8303.
Notes
[35] X. Li, C. Wang, H. Li, F. Nie, H. Yin and F.-X. Chen, J. Mater. Chem. A
2017, 5, 15525-15528.
The authors declare no competing financial interest.
[36] V. K. Bhosale and P. S. Kulkarni, Propellants Explos. Pyrotech. 2016, 41,
1013-1019.
[1]
S. G. Kulkarni, V. S. Bagalkote, S. S. Patil, U. P. Kumar and V. A. Kumar,
Propellants, Explosives, Pyrotechnics: An International Journal Dealing
with Scientific and Technological Aspects of Energetic Materials 2009,
34, 520-525.
[37] N. Jiao, Y. Zhang, L. Liu, M. S. Jean'ne and S. Zhang, J. Mater. Chem. A
2017, 5, 13341-13346.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.