Angew. Chem., Int. Ed., 2004, 43, 2334; (f) H.-L. Jiang and Q. Xu,
Chem. Commun., 2011, 47, 3351; (g) B. Chen, S. Xiang and
G. Qian, Acc. Chem. Res., 2010, 43, 1115; (h) Z. Zhang, S. Xiang
and B. Chen, CrystEngComm, 2011, 13, 5983.
2
3
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe
and O. M. Yaghi, Science, 2002, 295, 469.
(a) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy,
E. B. Lobkovsky, O. M. Yaghi and S. Dai, Angew. Chem., Int. Ed.,
2
006, 45, 1390; (b) B. Chen, S. Ma, F. Zapata, F. R. Fronczek,
E. B. Lobkovsky and H.-C. Zhou, Inorg. Chem., 2007, 46, 1233.
(a) Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin,
J. T. Hupp and R. Q. Snurr, Chem. Commun., 2008, 4135;
4
(
b) R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu,
P. G. Boyd, S. Alavi and T. K. Woo, Science, 2010, 330, 650;
c) J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010,
32, 38; (d) T. Panda, P. Pachfule, Y. Chen, J. Jiang and
(
1
R. Banerjee, Chem. Commun., 2011, 47, 2011; (e) J.-P. Zhang
and X.-M. Chen, J. Am. Chem. Soc., 2009, 131, 5516; (f) Q. Lin,
T. Wu, S.-T. Zheng, X. Bu and P. Feng, J. Am. Chem. Soc., 2012,
134, 784; (g) Y.-X. Tan, Y.-P. He and J. Zhang, Chem. Commun.,
2011, 47, 10647; (h) Z. Chen, S. Xiang, H. D. Arman,
J. U. Mondal, P. Li, D. Zhao and B. Chen, Inorg. Chem., 2011,
Fig. 4 The simulated transient breakthrough of an equimolar
–component mixture containing C , C , C , C , C
and CH in an adsorber packed with UTSA-35a, operating under
6
3
H
8
3
H
6
2
H
6
2
H
4
2 2
H ,
4
isothermal conditions at 296 K. The inlet gas is maintained at partial
5
0, 3442.
pressures Pi0 = 16.67 kPa.
5
6
D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi,
Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 20637.
Y.-S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias,
J. T. Hupp, S. T. Nguyen and R. Q. Snurr, Angew. Chem., Int. Ed.,
2012, 51, 1857.
(a) B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe and
O. M. Yaghi, Science, 2001, 291, 1021; (b) K. Koh, A. G. Wong-
Foy and A. J. Matzger, Angew. Chem., Int. Ed., 2008, 47, 677;
(c) K. Gedrich, I. Senkovska, N. Klein, U. Stoeck, A. Henschel,
M. R. Lohe, I. A. Baburin, U. Mueller and S. Kaskel, Angew.
Chem., Int. Ed., 2010, 49, 8489; (d) S.-T. Zheng, J. J. Bu, T. Wu,
C. Chou, P. Feng and X. Bu, Angew. Chem., Int. Ed., 2011,
the transient breakthrough of an equimolar 6-component mixture
containing CH , C H , C H , C H , C H and C H was deter-
4
2
2
2
4
2
6
3
6
3
8
mined. The molar concentrations of the gas phase exiting the
adsorber are shown in Fig. 4 for a gas mixture with partial
pressures of 16.67 kPa each for each of the six components in
7
the inlet. From the breakthrough curves, we note that CH
component with the poorest adsorption strength, breaks through
earliest, followed by the C components with the moderate
adsorption strength and finally by C components with the
4
, the
2
3
5
0, 8858.
8 (a) S. Ma and H.-C. Zhou, J. Am. Chem. Soc., 2006, 128,
1734–11735; (b) Y. K. Park, S. B. Choi, H. Kim, K. Kim,
strongest adsorption strength. Therefore it is possible to frac-
tionate the mixture into three separate streams: CH , C hydro-
carbons and C hydrocarbons during the adsorption cycle.
1
4
2
B.-H. Won, K. Choi, J.-S. Choi, W.-S. Ahn, N. Won, S. Kim,
D. H. Jung, S.-H. Choi, G.-H. Kim, S.-S. Cha, Y. H. Jhon,
J. K. Yang and J. Kim, Angew. Chem., Int. Ed., 2007, 46, 8230.
9 (a) S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and
I. D. Williams, Science, 1999, 283, 1148; (b) B. Xiao,
P. S. Wheatley, X. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi,
I. L. Megson, S. Bordiga, L. Regli, K. M. Thomas and
R. E. Morris, J. Am. Chem. Soc., 2007, 129, 1203; (c) S. Xiang,
W. Zhou, J. M. Gallegos, Y. Liu and B. Chen, J. Am. Chem. Soc.,
3
In summary, we design a novel expanded and decorated
ligand and synthesize a robust doubly interpenetrated metal–
1 2 3
organic framework for fractionation of C , C and C hydro-
carbons. This is the first example of porous metal–organic
frameworks for such industrially important hydrocarbon
1
4,15
separation.
The interactions between the MOF material
2
009, 131, 12415; (d) C.-Y. Sun, S.-X. Liu, D.-D. Liang,
K.-Z. Shao, Y.-H. Ren and Z.-M. Su, J. Am. Chem. Soc., 2009,
31, 1883; (e) N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha and
J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 51.
0 (a) H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi,
A. J. Matzger, M. O’Keeffe and O. M. Yaghi, Nature, 2004,
27, 523; (b) H. Furukawa, N. Ko, Y. B. Go, N. Aratani,
S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe,
and hydrocarbons are mainly van der Waals interactions
which favor the stronger adsorption of higher hydrocarbons.
The size-selective effect plays an important role in the separation
of C H /C H and C H /C H . It is expected that this work will
1
1
´
2
2
2
4
2
2
2
6
stimulate more investigation of newly emerging microporous
metal–organic frameworks for separation of industrially impor-
tant small hydrocarbons and eventually some practically useful
MOF materials will be targeted in the future.
4
¨
J. Kim and O. M. Yaghi, Science, 2010, 329, 424.
1 A. L. Myers and J. M. Prausnitz, AIChE J., 1965, 11, 121.
2 (a) R. Krishna, S. Calero and B. Smit, Chem. Eng. J., 2002, 88, 81;
1
1
This work was supported by an AX-1730 from Welch
Foundation (BC).
(
b) R. Krishna and J. M. van. Baten, Chem. Eng. J., 2007, 133, 121;
(c) R. Krishna and J. M. van. Baten, Phys. Chem. Chem. Phys.,
011, 13, 10593; (d) R. Krishna and J. M. van. Baten, J. Membr.
2
Sci., 2011, 377, 249.
Notes and references
1
3 R. Krishna and J. R. Long, J. Phys. Chem. C, 2011, 115, 12941.
4 (a) M. C. Das, H. Xu, S. Xiang, Z. Zhang, H. D. Arman, G. Qian
and B. Chen, Chem.–Eur. J., 2011, 17, 7817; (b) S. Xiang,
Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-L. Ding,
M.-H. Xie, C.-D. Wu, R. Gill, K. M. Thomas and B. Chen, Nat.
Commun., 2011, 2, 204; (c) Y. He, S. Xiang and B. Chen, J. Am.
Chem. Soc., 2011, 133, 14570; (d) Y. He, Z. Zhang, S. Xiang,
F. R. Fronczek, R. Krishna and B. Chen, Chem.–Eur. J., 2012,
18, 613; (e) Y. He, Z. Zhang, S. Xiang, H. Wu, F. R. Fronczek,
W. Zhou, R. Krishna, M. O’Keeffe and B. Chen, Chem.–Eur. J.,
2012, 18, 1901.
1
z Crystal data for UTSA-35: C96
3 6
H90Cd N O21, M = 2001.00, mono-
˚
˚
clinic, space group P2 /c, a = 14.306(2) A, b = 19.509(3) A, c =
1
3
ꢂ3
,
˚
˚
3
6.482(5) A, b = 99.6290(9)1, V = 10039(2) A , Z = 4, D
c
= 1.324 g cm
= 0.0594 for
= 0.1744 for all data, GoF = 1.022, CCDC 868753.
ꢂ1
m(Mo-K
I > 2s(I), wR
a
) = 0.683 mm , F(000) = 3440, final R
1
2
1
(a) J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869;
b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald,
E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev.,
(
2
012, 112, 724; (c) Y.-S. Bae and R. Q. Snurr, Angew. Chem., Int. Ed.,
011, 50, 11586; (d) H. Wu, Q. Gong, D. H. Olson and J. Li, Chem.
2
Rev., 2012, 112, 836; (e) S. Kitagawa, R. Kitaura and S.-I. Noro,
15 E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny,
C. M. Brown and J. R. Long, Science, 2012, 335, 1606.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6493–6495 6495