Job/Unit: Z12293
/KAP1
Date: 07-08-12 17:07:24
Pages: 6
Bromine Monofluoride
[11] R. Winter, R. J. Terjeson, G. L. Gard, J. Fluorine Chem. 1988,
89, 105–106.
[12] R. D. Chambers, W. K. R. Musgrave, J. Savory, J. Chem. Soc.
1961, 3779; R. D. Chambers, W. K. R. Musgrave, J. Savory, Proc.
Chem. Soc. London 1961, 113.
[13] O. Ruff, A. Braida, Z. Anorg. Allg. Chem. 1933, 214, 81–90.
[14] R. K. Streunenberg, R. C. Vogel, J. Fischer, J. Am. Chem. Soc.
1957, 79, 1320–1323.
[15] E. Lehmann, D. Naumann, M. Schmeisser, Z. Anorg. Allg. Chem.
1972, 388, 1–3.
[16] We tentatively explain the kinetic instability of CH2ClF against
F2(N2(1:4) at –100 °C as follows: F2 is very insoluble in CH2Cl2,
so only a slow reaction occurs. F2 is better soluble in CH2F2, but
the further fluorination to CHF3 or CF4 is kinetically (higher posi-
tive charge on the hydrogen atoms) and thermodynamically hin-
dered. In CH2ClF there might be higher solubility of F2 along
with a quicker and more exothermic reaction.
Table 4. Crystallographic data of BrF·CH3Cl and BrCl (ordered modi-
fication).
BrF·CH3Cl
BrCl
M
149.4
115.4
T /°C
–150
–140
Space group
a /pm
b /pm
Pnma (No 62)
945.9(2)
655.8(3)
692.6(1)
429.7
Cmc21 (No 36)
644.9(3)
454.7(2)
835.0(3)
244.9
c /pm
V /106pm3
Z
4
4
ρ calcd
2.310
3.129
Reflections
Collected
Independent
2θmax /°
μ /mm–1
Rint
R refined parameters
wR2
R [Fo Ͼ 4σ(Fo)]
5231
706
61.04
10.0
0.0248
32
0.0470
0.0191
1476
404
61.00
17.44
0.0199
14
[17] K. O. Christe, J. F. Hon, D. Philipovich, Inorg. Chem. 1973, 12,
84–89.
[18] F. Seel, W. Gombler, R. Budenz, Angew. Chem. 1967, 79, 686.
[19] H. Poleschner, S. Ellrodt, M. Malischewski, K. Seppelt, Angew.
Chem. Int. Ed. 2012, 51, 419–422; H. Poleschner, K. Seppelt,
Chem. Eur. J. 2004, 10, 6565–6574.
0.1233
0.0450
[20] D. F. Smith, M. Tidwell, D. V. P. Williams, Phys. Rev. 1956, 77,
420–421.
[21] P. Hansen, S. Brodersen, G. Guelachvili, J. Mol. Spectrosc. 1981,
88, 378.
would be obtained by the CCSD(T) method, but these calculation ex-
ceeds our available computer resources at least for the larger systems.
[22] R. Boese, A. D. Boese, D. Bläser, M. Y. Antipin, A. Ellern, K.
Seppelt, Angew. Chem. Int. Ed. Engl. 1997, 36, 1489–1491.
[23] W. V. F. Brooks, B. Crawford Jr., J. Chem. Phys. 1955, 23, 363;
H. Stammreich, D. Bassi, O. Sala, Spectrochim. Acta 1961, 17,
1173; D. F. Smith, M. Tidwell, D. V. P. Williams, Phys. Rev. 1950,
79, 1007–1008.
[24] R. Minkwitz, M. Berkei, Z. Naturforsch. B 1999, 54, 1615–1617.
[25] L. Gong, Q. Li, W. Xu, Y. Xie, H. F. Schaefer III, J. Chem. Phys.
A 2004, 108, 3598–3614.
Further details of the crystal structure investigations may be obtained
from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-
Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail:
posited data.html) on quoting the depository number CSD-424851
(BrF–CH3Cl) and CSD-424850 (BrCl).
[26] W. Gombler, A. Haas, H. Willner, Z. Anorg. Allg. Chem. 1980,
469, 118.
Acknowledgements
[27] H. Schumann, W. Genthe, E. Hahn, M.-B. Hossein, D. v. d. Helm,
J. Organomet. Chem. 1986, 298–317, 2561–2567.
This work was supported by the Deutsche Forschungsgemeinschaft as
part of the Graduiertenkolleg “Fluorine as a key Element“ DFG GK
1582/1.
[28] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
[29] Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Mil-
lam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jara-
millo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.
Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.
Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G.
Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,
2004.
References
[1] N. Bartlett, Proc. Chem. Soc. London 1962, 218.
[2] H. H. Claassen, H. Selig, J. G. Malm, J. Am. Chem. Soc. 1962,
84, 3593.
[3] R. Hoppe, W. Dähne, H. Mattauch, K. M. Rödder, Angew. Chem.
1962, 74, 903.
[4] F. Kraus, O. Ruff, Z. Anorg. Allg. Chem. 2012, 638, 707–709.
[5] D. F. Smith, Science 1963, 141, 1039–1040.
[6] M. Schmeißer, W. Ludovici, D. Naumann, D. Sartori, E. Scharf,
Chem. Ber. 1968, 101, 4214–4220; D. Naumann, E. Renk, E.
Lehmann, J. Fluorine Chem. 1977, 10, 395–403; S. Hoyer, K.
Seppelt, Angew. Chem. Int. Ed. 2000, 39, 1448–1449.
[7] L. Pauling, J. Am. Chem. Soc. 1932, 54, 3570–3582.
[8] R. A. Durie, Proc. R. Soc. (London) Ser. A 1951, 207, 388–395.
[9] H. Bürger, P. Schulz, E. Jacob, M. Föhnle, Z. Naturforsch. A
1986, 41, 1015–1020.
[30] Universität Stuttgart, Theoretische Chemie (theochem.uni-
stuttgart.de).
[10] R. R. Smardzewski, W. B. Fox, J. Fluorine Chem. 1976, 7, 453–
455; E. S. Prochaska, L. Andrews, R. Norman, G. Mamantov,
Inorg. Chem. 1978, 17, 970–977 (Br–BrF2!).
Received: June 25, 2012
Published Online:
Z. Anorg. Allg. Chem. 0000, 0–0
© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
5