Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
and only show moderate post-polymerization shrinkage. The
lamellar edges are an artefact from the discretization of the
structure. The structure stemming from photo-enol functional
star polymers (Figure 7 top) is very clean, whereas the
structure employing tetrazole functional star polymers
013, 25, 6123; (b) T. Pauloehrl, A. WellDe,OKI:.1K0..1O03e9h/lCe5nCscCh0l9a4e4g4eEr
and C. Barner-Kowollik, Chem. Sci., 2013, 4, 3503.
2
8
9
(a) J. E. Elliott and C. N. Bowman, Macromolecules, 2001, 34,
4
642; (b) M.-A. Tehfe, F. Dumur, N. Vilà, B. Graff, C. R. Mayer, J.
P. Fouassier, D. Gigmes and J. Lalevée, Macromol. Rapid
Commun., 2013, 34, 1104.
(Figure 7 middle) shows some spherical impurities most
probably stemming from microexplosions or contaminations.
Similar to the macroscopic networks, the DLW structure
prepared via NITEC also displays fluorescence, which can be
seen in Figure 7 bottom. The fluorescence can only be
observed for the three-dimensional NITEC structure indicating
that the impurities observed in SEM are neither stemming
from structure formation nor structure degradation.
(a) C. N. LaFratta, J. T. Fourkas, T. Baldacchini and R. A. Farrer,
Angew. Chem. Int. Ed., 2007, 46, 6238; (b) S. Maruo and J. T.
Fourkas, Laser & Photon. Rev., 2008, 2, 100; (c) T. G. Leong, A.
M. Zarafshar and D. H. Gracias, Small, 2010, 6, 792; (d) M.
Malinauskas, M. Farsari, A. Piskarskas and S. Juodkazis, Phys.
Rep., 2013, 533, 1; (e) A. S. Quick, H. Rothfuss, A. Welle, B.
Richter, J. Fischer, M. Wegener and C. Barner-Kowollik, Adv.
Funct. Mater., 2014, 3571.
1
1
1
1
0 M. Z. Alam, A. Shibahara, T. Ogata and S. Kurihara, Polymer,
2011, 52, 3696.
1 E. Blasco, B. V. K. J. Schmidt, C. Barner-Kowollik, M. Piñol and L.
Oriol, Macromolecules, 2014, 47, 3693.
2 J. A. Johnson, J. M. Baskin, C. R. Bertozzi, J. T. Koberstein and N.
J. Turro, Chem. Commun., 2008, 3064.
In summary, a novel concept for the light-induced network
formation is described as a platform technology. Key feature is
the wavelength selective network formation, as it is based on
two different photo-active moieties, i.e. photo-enol and
tetrazole functionalities which are activated at different
wavelength. The latter group allows for the synthesis
3 C. Mengel, W. H. Meyer and G. Wegner, Macromol. Chem.
Phys., 2001, 202, 1138.
offluorescent networks. The polymeric precursors are 14 (a) C. Barner-Kowollik, T. P. Davis and M. H. Stenzel, Aust. J.
Chem., 2006, 59, 719; (b) G. Moad, E. Rizzardo and S. H. Thang,
Aust. J. Chem., 2012, 65, 985.
5 X. Hao, C. Nilsson, M. Jesberger, M. H. Stenzel, E. Malmström, T.
P. Davis, E. Östmark and C. Barner-Kowollik, J. Polym. Sci., Part
A: Polym. Chem., 2004, 42, 5877.
6 M. Kaupp, T. Tischer, A. F. Hirschbiel, A. P. Vogt, U. Geckle, V.
Trouillet, T. Hofe, M. H. Stenzel and C. Barner-Kowollik,
Macromolecules, 2013, 46, 6858.
7 C. J. Dürr, P. Lederhose, L. Hlalele, D. Abt, A. Kaiser, S. Brandau
and C. Barner-Kowollik, Macromolecules, 2013, 46, 5915.
8 M. Kaupp, A. S. Quick, C. Rodriguez-Emmenegger, A. Welle, V.
Trouillet, O. Pop-Georgievski, M. Wegener and C. Barner-
Kowollik, Adv. Funct. Mater., 2014, 24, 5649.
produced with the versatile RAFT polymerization process,
which allows the network to be based on almost any material
from vinylic monomer, and is hence an important lever for
adjusting the material properties of the respective networks.
The versatility of the entire concept is further demonstrated
via the combination with DLW, which allows for the network
to be fabricated into any desired three-dimensional structure
with micrometer scale resolution.
1
1
1
1
Acknowledgements
1
2
2
9 T. Gruendling, M. Kaupp, J. P. Blinco and C. Barner-Kowollik,
Macromolecules, 2011, 44, 166.
0 H. Chaffey-Millar, M. H. Stenzel, T. P. Davis, M. L. Coote and C.
Barner-Kowollik, Macromolecules, 2006, 39, 6406.
1 A. S. Goldmann, T. Tischer, L. Barner, M. Bruns and C. Barner-
Kowollik, Biomacromolecules, 2011, 12, 1137.
C. B.-K. acknowledges support from the Karlsruhe Institute of
Technology (KIT) via the STN program of the Helmholtz
association.
References
1
2
E. S. Dragan, Chem. Eng. J., 2014, 243, 572.
D. Yuan, W. Lu, D. Zhao and H.-C. Zhou, Adv. Mater., 2011, 23,
3723.
3
4
(a) T. Wu, H. Tang, C. Bohne and N. R. Branda, Angew. Chem.
Int. Ed., 2012, 51, 2741; (b) T. Muraoka, C.-Y. Koh, H. Cui and S.
I. Stupp, Angew. Chem., 2009, 121, 6060.
(a) M. A. Tasdelen and Y. Yagci, Angew. Chem. Int. Ed., 2013, 52,
5
930; (b) A. Emeline, A. Salinaro, V. K. Ryabchuk and N.
Serpone, Int. J. Photoenergy, 2001, 3, 1; (c) G. Delaittre, A. S.
Goldmann, J. O. Mueller and C. Barner-Kowollik, Angew. Chem.
Int. Ed., 2015, 54, 11388.
5
K. K. Oehlenschlaeger, J. O. Mueller, N. B. Heine, M. Glassner, N.
K. Guimard, G. Delaittre, F. G. Schmidt and C. Barner-Kowollik,
Angew. Chem. Int. Ed., 2013, 52, 762.
6
7
H. Zhou and J. A. Johnson, Angew. Chem., 2013, 125, 2291.
(a) C. Rodriguez-Emmenegger, C. M. Preuss, B. Yameen, O. Pop-
Georgievski, M. Bachmann, J. O. Mueller, M. Bruns, A. S.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins