Organic Letters
Letter
details). The results were in good agreement with the previous
measurement conducted using traditional ferrioxalate protocol:
(5) Kirk, A. D.; Namasivayam, C. Anal. Chem. 1983, 55 (14), 2428.
(
(
6) Willett, K. L.; Hites, R. A. J. Chem. Educ. 2000, 77, 900.
−1
−1
8
0 and 75 μeinstein L s , respectively.
To summarize, we have demonstrated the viability of direct
(
8) Halperin, S. D.; Kwon, D.; Holmes, M.; Regalado, E. L.;
Campeau, L.-C.; DiRocco, D. A.; Britton, R. Org. Lett. 2015, 17, 5200.
9) Yamase, T.; Takabayashi, N.; Kaji, M. J. Chem. Soc., Dalton Trans.
984, 793.
LED−NMR measurements for facile and accurate quantum
yield determination. We have developed a simple and
convenient NMR actinometry protocol, which has been
validated with two well-studied chemical actinometers, o-
nitrobenzaldehyde and ferrioxalate. We have introduced an
NMR-friendly chemical actinometer, 2,4-dinitrobenzaldehyde,
with a superior range compared to the o-nitrobenzaldehyde,
that enabled NMR actinomtery at 440 nm. The applicability of
this methodology has been demonstrated using two recently
reported photochemical transformations. Finally, we have
developed a direct LED−NMR approach for ferrioxalate
actinometry, which significantly streamlines and simplifies
experimental procedures compared to the classical ferrioxalate
actinometry protocol. We believe that the NMR actinometry
framework developed in this work will become a useful tool in
the field of photochemistry.
(
1
(10) Quantum yield is equal to the number of molecules of product
divided by the number of photons absorbed by the system: ϕ =
(molecules product)/(photons absorbed). Since not all photons are
absorbed productively, the typical quantum yield will be less than 1.
(
11) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res.
Dev. 2016, 20, 1134.
12) (a) Sarmah, N.; Bhattacharyya, P. Kr.; Bania, K. K. J. Phys. Chem.
(
A 2014, 118, 3760. (b) Zhang, T.-T.; Jia, J.-F.; Wu, H.-S. J. Phys. Chem.
A 2010, 114, 12251.
(
2
(
13) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem.
004, 76, 2105.
14) Yayla, H. G.; Peng, F.; Mangion, I. K.; McLaughlin, M. M.;
Campeau, L.-C.; Davies, I. W.; DiRocco, D. A.; Knowles, R. R. Chem.
Sci. 2016, 7, 2066.
(15) An LED light source at 440 nm has been found to be relatively
ASSOCIATED CONTENT
Supporting Information
stable over time; therefore, the recalibration of the light intensity
before and after the reaction is recommended but not required.
■
*
S
(16) Relaxation time of nuclei used for quantification is a very
important yet very difficult to control parameter. Very short recycling
13
delays used in paramagnetic C NMR experiments allow high
sensitivity but exacerbate the differences in relaxation times if one tries
using external concentration reference. Unfortunately, in the presence
of a paramagnetic agent NMR relaxation times of different molecules
are strongly influenced by a degree of its interaction with such
paramagnetic agent. Matching relaxation times of the concentration
reference and of the analyte was found to be practically impossible.
Experimental procedures, data analysis, and spectro-
scopic data of new compounds (PDF)
AUTHOR INFORMATION
■
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors would like to acknowledge Dr. Rebecca T. Ruck,
Dr. R. Thomas Williamson, Dr. Gary E. Martin (MRL, Process
Research and Development), and Professor David McMillan
(Princeton) for very useful discussions.
REFERENCES
■
(
1) (a) Zimmerman, H. E. Pure Appl. Chem. 2006, 78 (12), 2193.
b) Hoffmann, N. Chem. Rev. 2008, 108 (3), 1052. (c) Prier, C. K.;
(
Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113 (7), 5322.
2) (a) Feldmeier, C.; Bartling, H.; Riedle, E.; Gschwind, R. M. J.
(
Magn. Reson. 2013, 232, 39. (b) Feldmeier, C.; Bartling, H.; Magerl,
K.; Gschwind, R. M. Angew. Chem., Int. Ed. 2015, 54, 1347. (c) Kind,
J.; Kaltschnee, L.; Leyendecker, M.; Thiele, C. M. Chem. Commun.
2
016, 52, 12506. (d) Schultz, D. M.; Levesque, F.; DiRocco, D. A.;
Reibarkh, M.; Ji, Y.; Joyce, L. A.; Dropinski, J. F.; Sheng, H.; Sherry, B.
D.; Davies, I. W. Angew. Chem., Int. Ed. 2017, 56, 15274. (e) Renzi, P.;
Hioe, J.; Gschwind, R. M. J. Am. Chem. Soc. 2017, 139, 6752.
(
3) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
(
4) (a) Parker, C. A. Proc. R. Soc. London, Ser. A 1953, 220, 104.
(
b) Hatchard, C. G.; Parker, C. A. Proc. R. Soc. London, Ser. A 1956,
235, 518.
D
Org. Lett. XXXX, XXX, XXX−XXX