C O MMU N I C A T I O N S
Table 1. Suzuki Cross-Coupling Reaction in Watera
fluorescence intensities of the aqueous rod-coil solutions containing
the aromatic substrates were showed to be significantly suppressed
because of fluorescence quenching,11 demonstrating that they are
effectively entrapped within the aromatic bundle of micelle
composed of rod-coil building blocks. These results strongly
support that the Suzuki coupling reaction occurs within the confined
environment of the aromatic bundle of the aggregates. The results
described here represent a significant example that self-assembly
of amphiphilic rod-coil molecules can provide a useful strategy
to construct an efficient supramolecular reactor for aromatic
coupling reaction.
In conclusion, we have demonstrated that self-assembly of
amphiphilic rod-coil molecules in aqueous solution can be used
as a supramolecular reactor for the room temperature Suzuki
coupling of a wide range of aryl halides, including even aryl
chloride with phenyl boronic acids in the absence of organic
solvents, giving rise to an environmentally friendly reaction system.
We believe that this supramolecular approach to reactor in aqueous
environment will be broadly applicable to a wide variety of catalytic
coupling reactions.
entry
X
Y
Z
R
yield (%)b
1
2
3
4
5
6
7
8
9
I
I
I
NO2
H
OCH3
NO2
H
OCH3
NO2
H
OCH3
OCH3
OCH3
H
OCH3
H
H
OCH3
H
H
OCH3
H
H
H
1
1
1
1
1
1
1
1
99
99
99
99
99
99
72
17
15
Br
Br
Br
Cl
Cl
Cl
Br
Br
1
c
10
1
non-ionic surfactant
no reaction
no reaction
d
1
THF
a
Reaction conditions: aryl halide (0.1 mmol), aryl boronic acid (0.12
mmol), Pd(OAc)2 (0.5 mol %), PPh3 (1.0 mol %), NaOH (0.2 mmol), R
50 mg, 0.025 mmol), and H2O (10 mL), stirred at room temperature for
(
1
b
2 h. Percent yields are calculated on the basis of GC analysis using
c
xylene as the internal standard. Polyethylene-block-poly(ethylene glycol)
d
(Mn ) 920, 50 wt % ethylene oxide). THF 5 mL.
Acknowledgment. We are grateful to Prof. Chul-Ho Jun for
helpful discussion. This work was supported by the National
Creative Research Initiative Program of the Korean Ministry of
Science and Technology.
Supporting Information Available: Detailed synthetic procedures,
characterization, and UV-vis spectra (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
References
-
4
Figure 3. Emission spectra of 1 (2 × 10 g/mL in H2O) by (a) added or
(1) Recent reviews: (a) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001,
101, 3869-3892. (b) Klok, H.-A.; Lecommandoux, S. AdV. Mater. 2001,
(
b) no phenyl boronic acid (0.4 mg), (c) triphenyl phosphine (0.4 mg), and
d) 1-bromo-4-nitrobenzene (0.4 mg). Excitation wavelength, 333 nm.
13, 1217-1229. (c) Stupp, S. I.; Pralle, M. U.; Tew, G. N.; Li, L.; Sayar,
(
M.; Zubarev, E. R. MRS Bull. 2000, 42-48. (d) Loos, K.; Munoz-Guerra,
S. Microstructure and Crystallization of Rigid-Coil Comblike Polymers
and Block Copolymers. In Supramolecular Polymers; Marcel Dekker:
New York, 2000; Chapter 7.
2) (a) Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.;
Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. M. J. Angew.
Chem., Int. Ed. 2003, 42, 772-776. (b) Lee, M.; Jang, D.-W.; Kang, Y.-
S.; Zin, W.-C. AdV. Mater. 1999, 11, 1018-1021. (c) de Gans, B. J.;
Wiegand, S.; Zubarev, E. R.; Stupp, S. I. J. Phys. Chem. B 2002, 106,
molecular reactor for room-temperature aromatic coupling in
aqueous environment. These results can be rationalized by consider-
ing the confinement of aromatic substrates by the rod bundles in
aqueous environment.10 With amphiphilic rod-coil molecule in
aqueous media, aromatic substrates will be entrapped in the rod
bundle that provides a nanoenvironment suitable for the confinement
of aromatic substrates through intermolecular interactions, including
hydrophobic interactions and π-π interactions. Within the confined
environment of the aromatic core of the micelle, the aromatic
substrates might be held in enforced proximity to each other. As a
result, this constrained environment would lead to a highly
concentrated reaction site that lowers the energy barrier for the
Suzuki aromatic coupling reaction.
Entrapment of the aromatic substrates within the aromatic bundles
was confirmed with aryl halides, boronic acids, and triphenyl
phosphine, respectively, in aqueous solution of 1 by using
fluorescence spectroscopy (Figure 3). The emission spectrum of
the rod-coil molecule in aqueous solution excited at 333 nm
exhibited, in the absence of the aromatic substrates, a strong
fluorescence with a maximum at 432 nm. In great contrast, the
(
9
730-9736. (d) Jeneckhe, S. A.; Chen, X. L. Science 1999, 283, 372-
3
75. (e) Tu, Y.; Wan, X.; Zhang, D.; Zhou, Q.; Wu, C. J. Am. Chem.
Soc. 2000, 122, 10201-10205.
(
3) (a) Wang, H.; You, W.; Yu, L.; Wang, H. H. Chem.-Eur. J. 2004, 10,
9
86-993. (b) Kilbinger A. F. M.; Schenning, A. P. H. J.; Goldoni, F.;
Feast, W. J.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 1820-1821.
(
4) Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M. J. Am. Chem. Soc. 2004, 126,
3551-3558.
(5) (a) Williams, D. R. M.; Fredrickson, G. H. Macromolecules 1992, 25,
3
561-3568. (b) Halperin, A. Macromolecules 1990, 23, 2724-2731.
(
6) CPK model of 1 showed that the fully extended molecular length is
approximately 13 nm.
(7) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483.
(
(
8) Littke, A. F.; Fu, G. C. Chem. ReV. 2002, 41, 4176-4211.
9) Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997-3000.
(10) (a) Hof, F.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4775-
4
777. (b) Kang, J.; Rebek, J., Jr. Nature 1997, 385, 3650-3656. (c)
Heemstra, J. M.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 1648-1649.
(11) Li, L.; Tedeshi, C.; Kurth, D. G.; M o¨ hwald, H. Chem. Mater. 2004, 16,
5
70-573.
JA048264Z
J. AM. CHEM. SOC.
9
VOL. 126, NO. 26, 2004 8083