J.H. Clark et al. / Catalysis Today 190 (2012) 144–149
149
Table 5
References
Isolated product yields from acid catalysed condensation chemistries (esterification,
aldol condensation, and acetal protection).
[1] As of 30/11/11 the Scifinder® database cites 1,148,722 instances in which p-TSA
or its monohydrate salt have been applied as a catalyst. By comparison sulfuric
acid has been recorded as a catalyst in 251,064 different reactions.
[2] W. Gerhartz (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition,
VCH, Weinheim, 1985.
[3] A.W. Hixson, R.H. McKee, J. Ind. Eng. Chem. 10 (1918) 982.
[4] R.J.W. Le Fèvre, J. Chem. Soc. (1934) 1501.
[5] P. Spica, Ber. Dtsch. Chem. Ges. 14 (1881) 652.
Reaction
Yield
p-CSA catalysed
p-TSA catalysed
A (p-cymene)
A (toluene)
A (2-MeTHF)
B
C
71%
65%
11%
73%
92%
69%
67%
10%
73%
92%
[6] M. Phillips, J. Am. Chem. Soc. 46 (1924) 686.
[7] A.W. Schorger, J. Ind. Eng. Chem. 10 (1918) 258.
[8] P.C. Ho, C.-H. Ho, K.A. Kraus, J. Chem. Eng. Data 24 (1979) 115.
[9] M.A. Martín-Luengo, M. Yates, M.J. Martínez Domingo, B. Casal, M. Iglesias, M.
Esteban, E. Ruiz-Hitzky, Appl. Catal. B: Environ. 81 (2008) 218.
[10] M.A. Martín-Luengo, M. Yates, E. Saez-Rojo, D. Huerta-Arribas, D. Aguilar, E.
Ruiz-Hitzky, Appl. Catal. A: Gen. 387 (2010) 141.
observed, unlike Reaction A in which up to 2% variation in yield
is observed. Indeed within the context of a synthetic procedure
no major allowances have to be made or additional considerations
accounted for if replacing p-TSA with p-CSA.
[11] V. Ferreira-Leitão, L.M.F. Gottschalk, M.A. Ferrara, A.L. Nepomuceno, H.B.C.
Molinari, E.P.S. Bon, Waste Biomass Valor. 1 (2010) 65.
[12] J.A.S. Lopez, Q. Li, I.P. Thompson, Crit. Rev. Biotechnol. 30 (2010) 63.
[13] W. Widmer, W. Zhou, K. Grohmann, Bioresour. Technol. 101 (2010) 5242.
[14] B. Mira, M. Blasco, A. Berna, S. Subirats, J. Supercrit. Fluids 14 (1999) 95.
[15] Q. Li, J.A. Silas, I.P. Thompson, Appl. Mircobiol. Biotechnol. 88 (2010) 671.
[16] M. Pourbafrani, G. Forgács, I.S. Horváth, C. Niklasson, M.J. Taherzadeh, Biore-
sour. Technol. 101 (2010) 4246.
4. Conclusion
The sulphonic acid derivative of p-cymene has been synthe-
sised from limonene for the first time, and demonstrated as
being equal to p-TSA in applications as an organic acid cata-
lyst. The synthesis of p-CSA does not require organic solvents
or rely on any other petrochemical auxiliaries. Although p-CSA
has the undeniable benefit of being the product of a sustainable
and cheap feedstock, it is not commercially available whereas
p-TSA is supplied by many chemical manufacturers. Although a
matter of inconvenience at present, if further chemistry is devel-
oped promoting the use of p-CSA the market pull may result in
a commercial supply being available in the future. The necessity
for sustainable chemical products will only increase with time,
and as such p-CSA is an ideal candidate to fulfil this role in acid
catalysis.
[17] M. Lohrasbi, M. Pourbafrani, C. Niklasson, M.J. Taherzadeh, Bioresour. Technol.
101 (2010) 7382.
[18] P.W.D. Mitchell, D.E. Sasser, European Patent 0 522 839 A2 (1993).
[19] M. Colonna, C. Berti, M. Fiorini, E. Binassi, M. Mazzacurati, M. Vannini, S.
Karanam, Green Chem. 13 (2011) 2543.
[20] C. Berti, E. Binassi, M. Colonna, M. Fiorini, G. Kannan, S. Karanam, M. Mazzacu-
rati, I. Odeh, M. Vannini, International Patent 078328 A2 (2010).
[21] M.A. Martin-Luengo, M. Yates, E.S. Rojo, D.H. Arribas, D. Aguilar, E.R. Hitzky,
Appl. Catal. A: Gen. 387 (2010) 141.
[22] P. Lesage, J.P. Candy, C. Hirigoyen, F. Humblot, J.M. Basset, J. Mol. Catal. A: Chem.
112 (1996) 431.
[23] T.P. Wells, J.P. Hallett, C.K. Williams, T. Welton, J. Org. Chem. 73 (2008) 5585.
[24] R.E. Kirk, D.F. Othmer, M. Grayson, D. Eckroth (Eds.), Kirk–Othmer Encyclopedia
of Chemical Technology, 3rd edition, John Wiley and Sons, New York, 1984.
[25] V.L.C. Gonc¸ alves, B.P. Pinto, J.C. Silva, C.J.A. Mota, Catal. Today 133–135 (2008)
673.
[26] A. Farhat, A.-S. Fabiano-Tixier, M. El Maataoui, J.-F. Maingonnat, M. Romdhane,
F. Chemat, Food Chem. 125 (2011) 255.
[27] V.L. Budarin, P.S. Shuttleworth, J.R. Dodson, A.J. Hunt, B. Lanigan, R. Marriott,
K.J. Milkowski, A.J. Wilson, S.W. Breeden, J. Fan, E.H.K. Sin, J.H. Clark, Energy
Environ. Sci. 4 (2011) 471.
Acknowledgements
[28] L.P. Hammett, A.J. Deyrup, J. Am. Chem. Soc. 54 (1932) 2721.
[29] D.-J. Tao, Y.-T. Wu, Z. Zhou, J. Geng, X.-B. Hu, Z.-B. Zhang, Ind. Eng. Chem. Res.
50 (2011) 1989.
[30] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377.
[31] Q. Xu, Z. Yang, D. Yin, F. Zhang, Catal. Commun. 9 (2008) 1579.
[32] X. Liang, S. Gao, G. Gong, Y. Wang, J.-G. Yang, Catal. Lett. 124 (2008) 352.
The authors thank Mr. Paul Elliott for determining the thermal
decomposition points of the sulphonic acids, Mr. Andrew Marriott
for performing the mass spectrometry of p-CSA, and Dr. Thomas
Farmer for proposing the concept of this article.