2912
A. Kulkarni et al. / European Journal of Medicinal Chemistry 44 (2009) 2904–2912
Fig. 11. Proposed structure of VO(IV) (5,6) complexes.
region of 200–1100 nm. The 1H NMR, 13C NMR and two dimen-
sional homocosy spectra of the Schiff bases were recorded in CDCl3
and 1H NMR spectra of La(III), Th(IV) complexes were recorded in
DMSO-d6 on a BRUKER 300 MHz spectrometer at room tempera-
ture using TMS as an internal reference. The ESR spectrum was
recorded on Varian-E-4X-band EPR spectrometer and the field set is
3200 G at modulation frequency of 100 kHz under liquid nitrogen
temperature using TCNE as g marker. FAB-mass spectra were
recorded on a JEOL SX 102/DA-6000 mass spectrometer/data
system using argon/xenon (6 kV, 10 A) as the FAB gas. The accel-
erating voltage was 10 kV and the spectra were recorded at room
temperature and m-nitrobenzyl alcohol was used as the matrix. The
mass spectrometer was operated in the positive ion mode. The
electrochemistry of VO(IV) complexes was studied on CHI1110A-
electrochemical (HCH Instruments) analyzer (Made in U.S.A).
Thermogravimetric analyses data were measured from room
temperature to 1000 ꢀC at a heating rate of 10 ꢀC/min. The data
were obtained by using a PERKIN–ELMER DIAMOND TG/DTA
instrument. Molar conductivity measurements were recorded on
ELICO-CM-82T Conductivity Bridge with a cell having cell constant
0.51 and magnetic moment was carried out by using Faraday
balance.
[10] I.P. Kostova, I. Manolov, I. Nicolova, S. Konstantinov, M. Karaivanova, Eur.
J. Med. Chem. 36 (2001) 339–347.
[11] I.P. Kostova, I. Manolov, S. Konstantinov, M. Karaivanova, Eur. J. Med. Chem. 34
(1999) 63–68.
[12] I.I. Manolov, I.P. Kostova, S. Konstantinov, M. Karaivanova, Eur. J. Med. Chem.
34 (1999) 853–858.
[13] Gangadhar B. Bagihalli, Prakash Gouda Avaji, Sangamesh A. Patil, Prema S.
Badami, Eur. J. Med. Chem., 43 (2008) 2639–2649.
[14] Y.M. Issa, M.M. Omar, B.A. Sabrah, S.K. Mohamed, J. Indian Chem. Soc. 69
(1992) 186–189.
[15] M.T. Alonso, E. Brunet, O. Juanes, J.C. Rodriguez-Ubis, J. Photochem. Photobiol.,
A 147 (2002) 113–125.
[16] I. Haiduc, C. Silvestru, Coord. Chem. Rev. 99 (1990) 253–296.
[17] R. Deng, J. Wu, L. Long, Bull. Soc. Chim. Belg. 101 (1992) 439–443.
[18] G.P. Pokhariyal, Proc. Natl. Acad. Sci. India 58A (1988) 369–373.
[19] G.P. Pokhariyal, Indian J. Chem. 28A (1989) 922.
[20] C. Bisi Castellani, O. Carugo, Inorg. Chim. Acta 159 (1989) 157–161.
[21] Gangadhar B. Bagihalli, Prakash Gouda Avaji, Sangamesh A. Patil, Prema
S. Badami, J. Coord. Chem. 61 (17) (2008) 2793–2806.
[22] V.K. Ahluwalia, Pooja Bhagat, Renu Aggarwal, Ramesh Chandra, Intermediates
for Organic Synthesis, I.K. International Pvt. Ltd., Delhi, 2005.
[23] T.A. Brown, Mol. Biol.-A Practical Approach 1 (1990) 51–52.
[24] A.K. Sadana, Y. Mirza, K.R. Aneja, O. Prakash, Eur. J. Med. Chem. 38 (2003)
533–536.
[25] A.A. Azza Abu-Hussen, A.A. Adel Emara, J. Coord. Chem. 57 (11) (2004)
973–987.
[26] W.T. Carnall, S. Siegel, J.R. Ferraro, B. Tani, E. Gebert, Inorg. Chem. 12 (1973)
560.
[27] D. Suresh Kumar, V. Alexander, Inorg. Chim. Acta 63 (1995) 238.
[28] J.R. Zamian, E.R. Dockal, G. Castellano, G. Oliva, Polyhedron 14 (1995)
1283–1288.
[29] A.A. Emara Adel, M.I. Adly Omima, Transit. Met. Chem. 32 (2007) 889–901.
[30] D.U. Warad, C.D. Satish, V.H. Kulkarni, C.S. Bajgur, Indian J. Chem. 39A (2000)
415–420.
Appendix. Supporting information
Supplementary data associated with this article can be found, in
[31] R.Bu. Xiu, F.L. Mintz, X.Z. You, R.X. Wang, Q. Yue, Q.J. Meng, Y.J. Lu,
D.V. Derveer, Polyhedron 15 (1996) 4585–4591.
[32] N. Raman, A. Kulandaisamy, C. Thangaraja, Synth. React. Inorg. Met.-Org.
Nano-Met. Chem. 34 (7) (2005) 1191–1210.
[33] K.S. Patel, G.A. Kolawole, J. Coord. Chem. 11 (1982) 231–237.
[34] Z.H. Chohan, C.T. Supuran, A. Scozzafava, J. Enzym. Inhib. Med. Chem. 19 (1)
(2004) 79–84.
[35] Z.H. Chohan, M. Praveen, Appl. Organomet. Chem. 15 (2001) 617–625.
[36] C.J. Balhausen, An Introduction to Ligand Field, McGraw Hill, New York, 1962.
[37] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
[38] B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols,
J.L. McLaughlin, Planta Med. 45 (1982) 31.
[39] Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enzym. Inhib. Med. Chem. 17
(2003) 261.
[40] Z.H. Chohan, Appl. Organomet. Chem. 16 (2002) 17.
[41] M.U. Hassan, Z.H. Chohan, C.T. Supuran, Main Group Met Chem. 25 (2002) 291.
[42] Z.H. Chohan, H. Pervez, S. Kausar, C.T. Supuran, Synth. React. Inorg. Met.-Org.
Chem. 3 (2002) 529.
[43] Z.H. Chohan, H. Pervez, A. Rauf, C.T. Supuran, Met-Based Drugs 8 (2002) 42.
[44] Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enzym. Inhib. Med. Chem. 18
(2003) 259.
References
[1] D. Egan, R. O’Kennedy, E. Moran, D. Cox, E. Prosser, R.D. Thornes, Drug. Metab.
Rev. 22 (5) (1990) 503–529.
[2] J.R.S. Hoult, M. Paya, Gen. Pharmacol. 27 (4) (1996) 713–722.
[3] P. Laurin, D. Ferroud, M. Klich, C. Dupis-Hamlin, P. Mauvais, P. Lassaigne,
A. Bonnefoy, B. Musicki, Bioorg. Med. Chem. Lett. 9 (14) (1999) 2079–2084.
[4] D.T. Connor, U.S. Patent 126, 4; 1981, 287.
[5] A.A. Emmanuel-Giota, K.C. Fylaktakidou, D.J. Hadjipavlou-Litina, K.E. Litinas,
D.N. Nicolaides, J. Heterocycl. Chem. 38 (3) (2001) 717–722.
[6] Z.M. Nofal, M. El-Zahar, S. Abd El-Karim, Molecules 5 (2000) 99–113.
[7] I. Manolov, N.D. Danchev, Eur. J. Med. Chem. Chim. Ther. 30 (6) (1995)
531–536.
[8] S. Kirkiacharian, D.T. Thuy, S. Sicsic, R. Bakhchinian, R. Kurkjian, T. Tonnaire, Il
Farmaco 57 (9) (2002) 703–708.
[9] D. Yu, M. Suzuki, L. Xie, S.L. Morris-Natschke, K.H. Lee, Med. Res. Rev. 23 (3)
(2003) 322–345.