10.1002/chem.201803429
Chemistry - A European Journal
COMMUNICATION
169˚C (Figure 6f). From the TGA measurement, a gradual linear
weight loss starting from around 50˚C is found (Figure 6e), with
a small inflexion between 165 and 175˚C (where a crystal phase
transition happens). The gradual release of inclusion solvent
molecules is due to the lack of specific interaction between the
guest molecules and the host tert-butyl interior (which is in
accordance with the findings for the single crystal state of 1), a
characteristic of non-commensurate inclusion solids.18
Keywords: nucleobase • pyrazolo[3,4-d]pyrimidine • pyrrolo[2,3-
d]pyrimidine • self-assembly • supermacrocyclic assembly
[1]
a) Q. Wu, P. M. Rauscher, X. Lang, R. J. Wojtecki, J. J. de Pablo, M. J.
A. Hore, S. J. Rowan, Science 2017, 358, 1434-1439; b) S. Erbas-
Cakmak, D. A. Leigh, C. T. Mcternan, A. L. Nussbaumer, Chem. Rev.
2015, 115, 10081-10206; c) M. Iyoda, J. Yamakawa, M. J. Rahman,
Angew. Chem. Int. Ed. 2011, 50, 10522-10553.
[2]
a) B. Adhikari, X. Lin, M. Yamauchi, H. Ouchi, K. Aratsu, S. Yagai,
Chem. Commun. 2017, 53, 9663-9683; b) C. Montoro-García, M. J.
Mayoral, R. Chamorro, D. Gonzalez Rodriguez, Angew Chem Int Ed
Engl. 2017, 129, 15855-15859; c) P. C. Ho, P. Szydlowski, J. Sinclair,
P.J.W. Elder, J. Kübel, C. Gendy,L. M. Lee, H. Jenkins, J. F. Britten, D.
R. Morim, I. Vargas-Baca, Nat. Commun. 2016, 7, 11299-11308; d) M.
J. Hollamby, K. Aratsu, B. R. Pauw, S. E. Rogers, A. J. Smith, M.
Yamauchi, X. Lin, S. Yagai, Angew. Chem. Int. Ed. 2016, 55, 9890-
9893.
[3]
[4]
J. L. Sessler, J. Jayawickramarajah, M. Sathiosatham, C. L. Sherman,
J. S. Brodbelt, Organic Letters 2003, 5, 2627-2630.
a) J. T. Davis, Angew. Chem. Int. Ed. 2004, 43, 668-698; b) J. Zhou, S.
Amrane, F. Rosu, G. F. Salgado, Y. Bian, H. Tateishikarimata, E. Largy,
D. N. Korkut, A. Bourdoncle, D. Miyoshi, J. Zhang, H. Ju, W. Wang, N.
Sugimoto, V. Gabelica, J. L. Mergny, J. Am. Chem. Soc. 2017, 139,
7768-7779.
[5]
a) M. Cai, A. L. Marlow, J. C. Fettinger, D. Fabris, T. J. Haverlock, B. A.
Moyer, J. T. Davis, Angew. Chem. Int. Ed. 2000, 39, 1283-1285; b) J. T.
Davis, S. Tirumala, J. R. Jenssen, E. Radler, D. Fabris, J.Org. Chem.
1998, 60, 4167-4176; c) F. Seela, T. Wiglenda, H. Rosemeyer, H.
Eickmeier, H. Reuter, Angew. Chem. Int. Ed. 2002, 41, 603-605. d) D.
Jiang, F. Seela, J. Am. Chem. Soc. 2010, 132, 4016-4024;
J. An, R. P. Fiorella, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009,
131, 8401-8403.
[6]
[7]
a) A. Marsh, M. Silvestri, J. M. Lehn, Chem. Commun. 1996, 13, 1527-
1528; b) H. Fenniri, P. Mathivanan, K. L. Vidale, D. M. Sherman, K.
Hallenga, K. V. Wood, J. G. Stowell, J. Am. Chem. Soc. 2001, 123,
3854-3855; c) H. Fenniri, G. A. Tikhomirov, D. H. Brouwer, S. Bouatra,
M. E. Bakkari, Z. Yan, J. Y. Cho, T. Yamazaki, J. Am. Chem. Soc. 2016,
138, 6115-6118.
Figure 6. The DSC, TGA and VT-PXRD experiments of the powder crystalline
solids of APN (1) and APC (2).
[8]
[9]
M. Mascal, N. M. Hext, R. Warmuth, M. H. Moore, J. P. Turkenburg,
Angew. Chem. Int. Ed. 1996, 35, 2204–2206.
In summary, two new adenine analogues, APN (1) and APC
(2), have been synthesized. Both compounds display intrinsic
capabilities to form intriguing supramolecular macrocyclic
structures, mediated by distinct HB base pair motifs. The
conversion of nitrogen at 8 position of 1 to C8-H of 2 has a
marked impact on their supramolecular structures and properties.
In powder crystalline state both compounds can act as inclusion
hosts, and the guest solvent molecules can be released, albeit
with different release behaviours which induces phase change
phenomena in both cases. These new types of adenine
analogues may represent potential avenues of further
development in the fields of porous or channel materials.
a) H. Yang, M. Pan, D. Jiang, Yang He, Org. Biomol. Chem. 2011, 9,
1516-1522; b) H. Zhao, W. Huang, X. Wu, Z. Xing, Y. He, Q. Chen,
Chem. Commun. 2012, 48, 6097-6099.
[10] a) M. Y. Pan, W. Hang, X. J. Zhao, H. Zhao, P. C. Deng, Z. H. Xing, Y.
Qing, Y. He, Org. Biomol. Chem. 2011, 9, 5692-5702; b) H. Zhao, X.
Guo, S. He, X. Zeng, X. Zhou, C. Zhang, J. Hu, X. Wu, Z. Xing, L. Chu,
Nat. Commun. 2014, 5, 3108-3118.
[11] S. He, H. Zhao, X. Guo, X. Xu, X. Zhou, J. Liu, Z. Xing, L. Ye, L. Jiang,
Q. Chen, Y. He, Chem. Eur. J. 2014, 20, 15473-15481.
[12] a) S. Schenone, M. Radi, F. Musumeci, C. Brullo, M. Botta, Chem. Rev.
2015, 45, 7189-7238; b) L. M. De Coen, T. S. Heugebaert, D. García, C.
V. Stevens, Chem. Rev. 2015, 116, 80-139.
[13] B. Apsel, J. A. Blair, B. Gonzalez, T. M. Nazif, M. E. Feldman, B.
Aizenstein, R. Hoffman, R. L. Williams, K. M. Shokat, Z. A. Knight, Nat.
chem. Biol. 2008, 4, 691-699.
Experimental Section
[14] D. E. Smith, I. Marquez, M. E. Lokensgard, A. L. Rheingold, D. A.
Hecht, J. L. Gustafson, Angew. Chem. Int. Ed. 2015, 54, 11754-11759.
[15] a) A. Samanta, Z. Liu, S. K. M. Nalluri, Y. Zhang, G. C. Schatz, J. F.
Stoddart, J. Am. Chem. Soc. 2016, 138, 11469-11480; b) D. Samanta, I.
Paul, M. Schmittel, Chem. Commun. 2017, 53, 9709-9712.
[16] K. C. Russell, E. Leize, A. V. Dorsselaer, J. M. Lehn, Angew. Chem. Int.
Ed. 1995, 34, 209-213.
Detailed experimental procedures and data for NMR, VT-NMR,
HR-MS, X-ray, SEM and UV spectroscopy can be found in the
Supporting Information.
Acknowledgements
[17] D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa, P. C. M.
Christianen, J. C. Maan, A. E. Rowan, R. J. M. Nolte, Angew. Chem. Int.
Ed. 2003, 7, 772-776.
National Natural Science Foundations of China (21572144),
the Chengdu Science and Technology Program Projects (2017-
CY02-00025-GX) and Testing & Analytical Center, Nuclear
Magnetic Resonance Laboratory, Sichuan University are
acknowledged.
[18] J. W. Steed, D. R. Turner, K. J. Wallace, Core Concepts in
Supramolecular Chemistry and Nanochemistry, John Wiley & Sons, Ltd,
England, 2007, p.181.
This article is protected by copyright. All rights reserved.