in 1-3 synthetic steps.5 A recent breakthrough has been the
development of monodentate phosphoramidites for the highly
enantioselective hydrogenation of R- and â-dehydroamino
acids6 and enamides.7 Other groups have developed mono-
dentate phosphonites,8 phosphites,9 and phosphines10 that also
perform well in asymmetric hydrogenation.
Scheme 1. Tautomeric Forms of SPOs
An area that remains underdeveloped is the asymmetric
hydrogenation of imines.11 Although catalysts are known that
give rise to high enantioselectivities in the hydrogenation of
acetophenone-based imines such as rhodium/monosulfonated
bdpp12 and of cyclic imines using ansa-titanocene,13 the rate
of these is still too low for industrial use. A very fast iridium
catalyst was developed by Blaser et al. for the asymmetric
hydrogenation of an intermediate for the herbicide (S)-
Metolachlor.14 However, the enantioselectivity did not exceed
80%. Nevertheless, this process is used industrially. Enan-
tioselective transfer hydrogenation of imines has been
developed recently and seems to have great potential.15
In this paper, we report our results on the application of
secondary phosphine oxides,16,17 an entirely new class of
enantiopure monodentate ligands, in the iridium-catalyzed
asymmetric hydrogenation of acetophenone-based imines.
Secondary Phosphine Oxides (SPOs). In solution, SPOs
exist in equilibrium between pentavalent (phosphine oxide
form) and trivalent (phosphinite form) tautomeric structures
(Scheme 1).17 Although at room temperature the phosphine
oxide form is the more stable one,18 it is the phosphinite
form that coordinates to the transition metal.19
SPOs are easily prepared in a two-step one-pot procedure
from readily available starting materials16-20 and are thus
highly suited to a modular or a combinatorial approach. They
are air and moisture stable. Nonchiral or racemic SPOs have
been used as ligands in Pt-catalyzed hydroformylation,21 in
Pt-catalyzed hydrolysis22 and amination23 of nitriles, and in
Pd-catalyzed aromatic substitution reactions.24 Enantiopure
SPOs have been obtained by classical resolution using (S)-
mandelic acid18,25 or a three-step resolution procedure
developed by Chan.26a They do not racemize easily.17 It is
thus very surprising that they have been used only as
intermediates in the preparation of chiral phosphines and
bisphosphines.26 We have not been able to find any reports
on their application in asymmetric catalysis.
(4) de Vries, J. G. In Encyclopedia of Catalysis; Horvath, I. T., Ed.;
John Wiley & Sons: New York, 2003; Vol. 3, p 295. See also the on-line
We have prepared a range of monodentate SPOs (1-7)
by reaction of R2MgBr with R1PCl2 (reversed addition)
followed by hydrolysis (Scheme 2). Ligand 8 was prepared
(5) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(6) (a) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.;
de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000,
122, 11539. (b) van den Berg, M.; Minnaard, A. J.; de Vries, J. G.; Feringa,
B. L. (DSM N. V.). WO 02/04466, 2002. (c) van den Berg, M.; Minnaard,
A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B.
L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers,
J. A. F.; Henderickx, H. J. W.; de Vries, J. G. AdV. Synth. Catal. 2003,
345, 308. (d) Pen˜a, D.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. J.
Am. Chem. Soc. 2002, 124, 14552. (e) Zeng, Q.; Liu, H.; Mi, A.; Jiang, Y.;
Li, X.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron 2002, 58, 8799.
(7) (a) van den Berg, M.; Haak, R. M.; Minnaard, A. J.; de Vries, A. H.
M.; de Vries, J. G.; Feringa, B. L. AdV. Synth. Catal. 2002, 344, 1003. (b)
Jia, X.; Guo, R.; Li, X.; Yao, X.; Chan, A. S. C. Tetrahedron Lett. 2002,
43, 5541.
Scheme 2. Synthesis of tert-Butyl-phenylphosphine Oxide
(8) Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.;
Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961.
(9) Reetz, M. T.; Mehler, G. Angew. Chem., Int. Ed. 2000, 39, 3889.
(10) (a) Guillen, F.; Fiaud, J.-C. Tetrahedron Lett. 1999, 40, 2939. (b)
Junge, K.; Oehme, G.; Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller,
M. Tetrahedron Lett. 2002, 43, 4977.
from Taddol by treatment with PCl3 followed by hydrolysis.
Ligand 9 was prepared following the procedure of Fiaud et
al. (Figure 1).10a
(11) (a) Spindler, F.; Blaser, H.-U. In Transition Metals for Organic
Synthesis. Building Blocks and Fine Chemicals; Beller, M., Bolm, C., Eds.;
Wiley-VCH: Weinheim, Germany, 1998; Vol. 2, p 69. (b) Spindler, F.;
Blaser, H.-U. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, p 248.
(12) (a) Bakos, J.; Orosz, A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou,
D. J. Chem. Soc., Chem. Commun. 1991, 1684. (b) Lensink, C.; de Vries,
J. G. Tetrahedron: Asymmetry 1992, 3, 235. (c) Lensink, C.; Rijnberg, E.;
de Vries, J. G. J. Mol. Catal. A: Chem. 1997, 116, 199.
(13) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116,
8952.
(14) (a) Bader, R. R.; Baumeister, P.; Blaser, H.-U. Chimia 1996, 50,
99. (b) Spindler, F.; Pugin, B.; Jalett, H.-P.; Buser, H.-P.; Pittelkow, U.;
Blaser, H.-U. In Catalysis of Organic Reactions; Malz, R. E., Jr., Ed.; Marcel
Dekker: New York, 1996; p 153.
(15) (a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1996, 118, 4916. (b) Sugi, K. D.; Nagata, T.; Yamada,
T.; Mukaiyama, T. Chem. Lett. 1997, 493.
(16) Kleiner, H.-J. In Houben-Weyl, Methoden der Organischen Chemie,
4 Auflage; Regitz, M., Ed.; Georg Thieme Verlag: Stuttgart, 1982; Band
E1, p 240.
(17) Gallagher, M. J. In The Chemistry of the Organophosphorus
Compounds; Hartley, F. R., Ed.; John Wiley & Sons: Chichester, UK, 1992;
Vol. 2, p 53.
Figure 1. Secondary phosphine oxides.
Org. Lett., Vol. 5, No. 9, 2003
1504