N.V. Tverdova et al. / Journal of Molecular Structure 1023 (2012) 227–233
233
Table 9
[9] T. Strenalyuk, S. Samdal, H.V. Volden, J. Phys. Chem. A 111 (2007) 12011.
[10] T. Strenalyuk, S. Samdal, H.V. Volden, J. Phys. Chem. A 112 (2008) 4853.
[11] T. Strenalyuk, S. Samdal, H.V. Volden, J. Phys. Chem. A 112 (38) (2008) 9075.
[12] T. Strenalyuk, S. Samdal, H.V. Volden, J. Phys. Chem. A 112 (40) (2008) 10046.
[13] N.V. Tverdova, G.V. Girichev, N.I. Giricheva, O.A. Pimenov, Struct. Chem. 22
(2011) 441.
[14] C.J. Schramm, R.P. Scaringe, D.R. Stojakovic, B.M. Hoffman, J.A. Ibers, T.J. Marks,
J. Am. Chem. Soc. 102 (1980) 6702.
[15] M.-S. Liao, S. Scheiner, J. Comput. Chem. 23 (2002) 1391.
[16] A.V. Soldatova, J. Kim, X. Peng, A. Rosa, G. Ricciardi, M.E. Kenney, M.A.J.
Rodgers, Inorg. Chem. 46 (2007) 2080.
[17] Z. Liu, X. Zhang, Y. Zhang, J. Jiang, Spectrochem. Acta A 67 (2007) 1232.
[18] G.V. Girichev, A.N. Utkin, Yu.F. Revichev, Prib. Tekh. Eksp. 2 (1984) 187.
[19] G.V. Girichev, S.A. Shlykov, Yu.F. Revichev, Prib. Tekh. Eksp. 4 (1986) 167.
[20] G.V. Girichev, S.A. Shlykov, V.N. Petrova, N.Yu. Subbotina, S.B. Lapshina, T.G.
Danilova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 31 (8) (1988) 46.
[21] E.G. Girichev, A.V. Zakharov, G.V. Girichev, M.I. Bazanov, Izv. Vyssh. Uchebn.
Zaved., Tekstiln. Prom. 2 (2000) 142.
Second order perturbation energies E(2) (kcal/mol) of orbital interactions in the metal
phthalocyanines (see section ‘NBO analysis’ for details).
P
M N direct donation
E(2)
E
(2)(M N)
NiPc
CuPc
hsp1.90(N) ? 4s(Ni)
49.34
39.24
hsp1.90(N) ? 3d(x2–y2)(Ni)
88.58
a
spin
hsp2.02(N) ? 4s(Cu)
23.17
28.46
16.13
b spin
hsp1.97(N) ? 4s(Cu)
hsp1.97(N) ? 3d(x2–y2)(Cu)
67.76
53.42
ZnPc
hsp2.12(N) ? 4s(Zn)
53.42
95
90
85
80
75
70
65
60
55
50
45
[22] D.D. Eley, D.J. Hazeldine, T.F. Palmer, Chem. Phys. 69 (1973) 1808.
[23] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[24] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[25] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[26] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.
[27] J.P. Perdew, Phys. Rev. B 33 (1986) 8822.
[28] G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J.
Mantzaris, J. Chem. Phys. 89 (1988) 2193.
[29] G.A. Petersson, M.A. Al-Lah, J. Chem. Phys. 94 (1991) 6081.
[30] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.
[31] M.J. Frish, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.
[32] T.H. Dunning, J. Chem. Phys. 90 (1989) 1007.
NiPc
CuPc
[33] T.H. Dunning, J. Chem. Phys. 55 (1971) 716.
[34] M. Urban, V. Kello, P. Carsky, Theor. Chim. Acta (Berl.) 45 (1977) 205.
[35] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta (Berl.) 28 (1973) 213.
[36] T.H. Dunning, P.J. Hay, in: H.F. Schaefer III (Ed.), vol. 2, Plenum Press. New York,
1977, p. 1.
ZnPc
[37] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86 (1987) 866.
[38] J.M.L. Martin, A. Sundermann, J. Chem. Phys. 114 (2001) 3408.
[39] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich,
J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox,
T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C.
Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 03, Revision B04,
Gaussian Inc., Pittsburgh, PA, 2003.
1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00
r (M–N), Å
Fig. 6. Experimental (GED) M–N bond distance and theoretical (DFT) total energy of
donor–acceptor orbital interactions per one M–N bond for nickel, copper and zinc
phthalocyanines. The correlation coefficient is 0.997. See NBO analysis section for
details.
Acknowledgement
[40] V.A. Sipachev, J. Mol. Struct. 567–568 (2001) 67.
[41] V.A. Sipachev, J. Mol. Struct. 121 (1985) 143.
[42] V.A. Sipachev, in: I. Hargittai, M. Hargittai (Eds.), Advances in Molecular
Structure Research, JAI Press, New York, 1999.
This work was supported by the Russian Foundation for Basic
Research (Grant No. 10-03-00884a).
[43] W.C. Hamilton, Acta Cryst. 18 (1965) 502.
[44] J.M. Robertson, I. Woodward, J. Chem. Soc. (1937) 219.
[45] Sharon M. Palmer, Judith M. Stanton, Brian M. Hoffman, James A. Ibers, Inorg.
Chem. 25 (14) (1986) 2296.
References
[46] K. Yakushi, H. Yamakado, M. Yoshitake, N. Kosugi, H. Kuroda, T. Sugano, M.
Kinoshita, A. Kawamoto, J. Tanaka, Bull. Chem. Soc. Jpn. 62 (1989) 687.
[47] K. Yakushi, H. Yamakado, M. Yoshitake, N. Kosugi, H. Kuroda, A. Kawamoto, J.
Tanaka, T. Sugano, M. Kinoshita, S. Hino, Synth. Met. 29 (1989) F95.
[1] B.D. Berezin, Coordination Compounds of Porphyrins and Phthalocyanines,
Moscow, 1978.
[2] B.I. Stepanov, Introduction in the Chemistry and Technology of Organic Dyes,
third ed., Moscow, 1984.
[3] T.A. Yourre, L.I. Rudaya, N.V. Klimova, V.V. Shamanin, Semiconductors 37 (7)
(2003) 835.
[49] A. Domenicano, I. Hargittai (Eds.), Molecular Structures [Russian translation],
Mir, Moscow, 1997. p. 672.
[50] G.V. Girichev, N.I. Giricheva, N.V. Belova, N.P. Kuzmina, Coord. Chem. (Russian)
25 (12) (1999) 892.
[4] R.F. Service, Science 310 (2005) 1762.
[5] J. Simon, C. Sirlin, Pure Appl. Chem. 61 (1989) 1625.
[6] S. Heutz, C. Mitra, W. Wu, A.J. Fisher, A. Kerridge, A.M. Stoneham, A.H. Harker, J.
Gardener, H.-H. Tseng, T.S. Jones, Ch. Renner, G. Aeppli, Adv. Mater. 19 (2007)
3618.
[51] J.L. Hoard, Science 174 (1971) 1295.
[52] R. Mason, G.A. Williams, J.Chem, Soc. Dalton (1979) 676.
[53] J.L. Hoard, Ann. N. Y. Acad. Sci. 206 (1973) 18.
[7] V. Chong-Yu Ruan, M. Mastryukov, J. Fink, Chem. Phys. 111 (1999) 3035.
[8] V. Mastryukov, J. Mol. Struct. 556 (2000) 225.