L.J. Santos et al. / Tetrahedron 67 (2011) 228e235
235
and the residue was purified by column chromatography on neutral
alumina. The column was eluted with CH Cl . The purple fraction
corresponding to Zn(TPP) was collected and evaporated to dryness.
Supplementary data
2
2
Synthetic details of the malonates 3, 4, and 5. Spectral shifts,
molar absorptivity of species calculated by SQUAD (M and ML) or
experimentally determined (M) and BeH plot for change of absor-
The resulting purple solid was kept over P
2
O
5
under vacuum in
3): 423 (5.68), 550
a desiccator. UVevis in toluene, max, nm (log
l
1
1
(
8
4.40). H NMR (CDCl
3
, TMS):
d
7.77e7.79 (m; 12H; m- and p-HPh),
-pyrrole).
bance in the systems Zn(TPP)/Py, Zn(TPP)/3, and Zn(TPP)/4. H NMR
1
13
.22e8.24 (m; 8H; o-H Ph), 8.95e8.96 (m; 8H;
b
spectra of the titration of ZnTPP by ligand 7. H and C NMR spectra
of the new fullerene derivatives 6, 7, and 8. Supplementary data as-
InChIKeys of themost important compounds describedin this article.
4
.3. Spectrophotometric titration
Spectrophotometric titrations were performed in a borosilicate
glass cuvette tightly capped with a Teflon-coated silicon septum us-
ꢄ
ing a 25.0ꢃ0.1 C thermostatized cell-holder. All stock and working
References and notes
solutions were kept in the dark fully wrapped with aluminum foil.
Additionally, thetitrationwascarried out withminimalambientlight
exposure, and the spectrophotometer shutter was kept closed in
between measurements. The initial concentration of the toluene
solutions of Zn(TPP) in the cuvette was determined spectrophoto-
1. Clifford, J. N.; Accorsi, G.; Cardinali, F.; Nierengarten, J.-F.; Armaroli, N. C. R.
Chim. 2006, 9, 1005.
2
3
4
. (a) Imahori, H. Org. Biomol. Chem. 2004, 2, 1425; (b) Ito, O.; Yamanaka, K.-I. Bull.
Chem. Soc. Jpn. 2009, 82, 316.
. Marczak, R.; Sgobba, V.; Kutner, W.; Gadde, S.; D’Souza, F.; Guldi, D. M. Lang-
muir 2007, 23, 1917.
. Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22.
ꢀ
6
ꢀ1
metrically; typical values were from 1.23e1.83ꢂ10 mol L . Ali-
quots of the toluene stock solutions of the titrating ligands (Py, 3, 4, 6,
5. Liddel, P. A.; Sumida, J. P.; Macpherson, A. N.; Noss, L.; Seely, G. R.; Clark, K. N.;
Moore, A. L.; Moore, T. A.; Gust, D. Photochem. Photobiol. 1994, 60, 537.
7
, or 8) were added consecutively to the cuvette through the cuvette
silicon septum with Hamilton microsyringes; immediately prior to
recording the UVevis spectrum, the system was magnetically stirred
6
. (a) Fazio, M. A.; Lee, O. P.; Schuster, D. I. Org. Lett. 2008, 10, 4979; (b) Iehl, J.;
Osinska, I.; Louis, R.; Holler, M.; Nierengarten, J.-F. Tetrahedron Lett. 2009, 50,
2245; (c) Urbani, M.; Nierengarten, J.-F. Tetrahedron Lett. 2007, 48, 8111; (d)
Schuster, D. I.; Li, K.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Stanisky, C.; Cross, R. J.;
Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2007, 129, 15973;
ꢄ
for 1 min at 25.0ꢃ0.1 C to allow for thermal and chemical equili-
bration after the addition of each ligand aliquot. The total concen-
(
e) Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Zheng, G.; Chen, Y.;
Pandey, R. K.; Fujitsuka, M.; Ito, O.; Kadish, K. M. J. Am. Chem. Soc. 2001,123,10676.
7. Fukuzumi, S.; Kojima, T. J. Mater. Chem. 2008, 18, 1427.
ꢀ
6
ꢀ1
trationof the ligandsinthe cuvette rangedfrom7.93ꢂ10 mol L to
ꢀ3
ꢀ1
2
.73ꢂ10 mol L . The end of the titration was determined when
8. D’Souza, F.; Smith, P. M.; Rogers, L.; Zandler, M. E.; Islam, D.-M. S.; Araki, Y.; Ito,
UVevis spectral variations ceased. Dilution effects along the titration
O. Inorg. Chem. 2006, 45, 5057.
were accounted for when calculating the total concentration of Zn
TPP) and ligand at each titration point. The mathematical treatment
of the absorbance versus concentration data was carried out either
graphically (via BenesieHildebrand plots) or computationally (us-
9. Tat, F. T.; Zhou, Z.; MacMahon, S.; Song, F.; Rheingold, A. L.; Echegoyen, L.;
Schuster, D. I.; Wilson, S. R. J. Org. Chem. 2004, 69, 4602.
(
10. D’Souza, F.; Zandler, M. E.; Gadde, S.; McCarty, A. L.; Karr, P. A.; El-Khouly, M. E.;
Araki, Y.; Ito, O. J. Phys. Chem. B 2005, 109, 10107.
2
2
11. Yin, G.; Xu, D.; Xu, Z. Chem. Phys. Lett. 2002, 365, 232.
ing the software SQUAD).
12. Uyar, Z.; Satake, A.; Kobuke, Y.; Hirota, S. Tetrahedron Lett. 2008, 49, 5484.
1
1
3. D’Souza, F.; Deviprasad, G. R.; Rahman, M. S.; Choi, J.-P. Inorg. Chem.1999, 38, 2157.
4. D’Souza, F.; Deviprasad, G. R.; Zandler, M. E.; El-Khouly, M. E.; Fujitsuka, M.; Ito,
O. J. Phys. Chem. A 2003, 107, 4801.
4
.4. Electrochemical experiments
15. Deye, J. R.; Shiveley, A. N.; Goins, S. M.; Rizzo, L.; Oehrle, S. A.; Walters, K. A.
Inorg. Chem. 2008, 47, 23.
6. Wu, Z.-Q.; Li, C.-Z.; Feng, D.-J.; Jiang, X.-K.; Li, Z.-T. Tetrahedron 2006, 62, 11054.
17. Trabolsi, A.; Urbani, M.; Delgado, J. L.; Ajamaa, F.; Elhabiri, M.; Solladi eꢀ , N.;
The electrochemical experiments were carried out using an
AUTOLAB (PGSTAT 302) ECOChemie potentiostategalvanostat. The
1
Nierengarten, J.-F.; Albrecht-Gary, A.-M. New J. Chem. 2008, 32, 159.
18. Armaroli, N.; Diederich, F.; Echegoyen, L.; Habicher, T.; Flamigni, L.; Marconi, G.;
Nierengarten, J. F. New J. Chem. 1999, 23, 77.
19. (a) D’Souza, F.; Smith, P. M.; Gadde, S.; McCarty, A. L.; Kullman, M. J.; Zandler, M. E.;
Itou, M.; Araki, Y.; Ito, O. J. Phys. Chem. B 2004, 108, 11333; (b) D’Souza, F.; Devi-
pradad, G. R.; El-Khouly, M.E.; Fujitsuka, M.; Ito, O. J. Am. Chem.Soc. 2001,123, 5277;
electrochemical experiments were carried out in a typical three-
ꢀ2
2
electrode cell; a vitreous carbon disk electrode (A¼2.8ꢂ10 cm )
was used as the working electrode, a platinum wire was used as the
counter electrode, and a Ag/0.1 M AgNO
electrode in acetonitrile. The electrochemical profile was recorded in
:1o-dichlorobenzene/N,N-dimethylformamide solutionsofZn(TPP)
3
served as the reference
(c) D’Souza, F.; Devipradad, G. R.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O.; Klykov, A.;
1
VanStipdonk, M.; Perera, A. J. Phys. Chem. A 2002, 106, 3243; (d) Wilson, S. R.;
MacMahon, S.; Tat, F. T.; Jarowski, P. D.; Schuster, D. I. Chem. Commun. 2003, 226.
20. Trabolsi, A.; Elhabiri, M.; Urbani, M.; de la Cruz, J. L. D.; Ajamaa, F.; Solladi eꢀ , N.;
ꢀ1
ꢀ1
(
0.002 mol L ), fullerene or fullerene-free ligand (0.002 mol L ),
ꢀ
1
andtetrabutylammoniumtetrafluoroborate(Bu
4
NBF
4
, 0.1 molL )at
Albrecht-Gary, A.-M.; Nierengarte, J.-F. Chem. Commun. 2005, 5736.
room temperature under nitrogen atmosphere.
.5. NMR titration
The coordination of ligand 6 and 7 to Zn(TPP) was monitored
2
1. Hauke, F.; Swartz, A.; Guldi, D. M.; Hirsch, A. J. Mater. Chem. 2002, 2088.
22. Leggett, D. J.; Kelly, S. L.; Shiue, L. R.; Wu, Y. T.; Chang, D.; Kadish, K. M. Talanta
1
983, 30, 579.
4
23. Bingel, C. Chem. Ber. 1993, 126, 1957.
24. Nierengarten, J.-F.; Habicher, T.; Kessinger, R.; Cardullo, F.; Diederich, F. Helv.
Chim. Acta 1997, 80, 2238.
1
25. Diederich, F.; Isaacs, L.; Philp, D. Chem. Soc. Rev. 1994, 243.
spectroscopically by H NMR. To a CDCl
(
3
solution of Zn(TPP)
6.50 mmol L ) were added appropriate amounts of 6 directly into
the NMR tube to yield total concentrations of 6 within the
26. Xiang, X.; Wei, X.-W.; Zhang, X.-M.; Wang, H.-L.; Wei, X.-L.; Hu, J.-P.; Yin, G.; Xu,
ꢀ
1
Z. Inorg. Chem. Commun. 2006, 9, 452.
27. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703.
ꢀ
1
28. Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier: Amsterdam, 1975.
2
.95e10.80 mmol L range; upon each addition the corresponding
spectrum was recorded. A analogous titration was carried out using
instead of 6 (data are given in the Supplementary data).
29. Li, C. Z.; Zhu, J.; Wu, Z. Q.; Hou, J. L.; Li, C.; Shao, X. B.; Jiang, X. K.; Li, Z. T.; Gao,
X.; Wang, Q. R. Tetrahedron 2006, 62, 6973.
7
30. Kirskey, C. H.; Hambright, P.; Storm, C. B. Inorg. Chem. 1969, 8, 2141.
3
1. (a) dos Santos, L. J.; Alves, R. B.; de Freitas, R. P.; Nierengarten, J.-F.; Magalh ~a es,
L. E. F.; Krambrock, K.; Pinheiro, M. V. B. J. Photochem. Photobiol., A 2008, 200,
277; (b) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.;
Masumizu, T.; Nagano, T. J. Am. Chem. Soc. 2003, 125, 12803; (c) Wang, S.; Gao,
R.; Zhou, F.; Selke, M. J. Mater. Chem. 2004, 14, 487.
2. (a) Zinimermanc, A. A.; Orlando, J. R.; Gianni, M. H. J. Org. Chem. 1969, 34, 73; (b)
Mochalov, I. A.; Lapshin, A. N.; Nadtochenki, V. A.; Smirnov, V. A.; Goldshleger,
N. F. Russ. Chem. Bull. 2006, 55, 1598.
3. (a) Wijesekera, T. P.; Dolphin, D. A. In Metalloporphyrins in Catalytic Oxidations;
Sheldon, R. A., Ed.; MarcelDekker: New York, NY,1994; pp 193e239; (b) Rebou c¸ as, J.
S.; de Carvalho, M. E. M. D.; Idemori, Y. M. J. Porphyrins Phthalocyanines 2002, 6, 50.
Acknowledgements
Financial support from The Brazilian Research Council (CNPq)
and Funda c¸ ~a o de Amparo aꢁ Pesquisa do Estado de Minas Gerais
3
(
FAPEMIG) is gratefully acknowledged. We also thank Laborat oꢀ rio
3
ThoMSon de Espectrometria de Massas (Universidade Estadual de
Campinas, SP-Brazil) for the mass spectrometric analyses.