SULFAMATES AND SULFAMIDES INHIBITORY ACTIVITY
J. Chem. Inf. Model., Vol. 50, No. 6, 2010 1121
Inhibitors with Low Affinity for the Ubiquitous Isozyme II, Exempli-
fied by the Crystal Structure of the Topiramate Sulfamide Analogue.
J. Med. Chem. 2006, 49, 7024–7031.
she gratefully acknowledges. This research was supported
in part by the National Science Foundation (TG-CHE090124)
through TeraGrid resources provided by NICS and LONI
and by the Agencia de Promocio´n Cient´ıfica y Tecnolo´gica
(PICT 00339/2007), CONICET, the Universidad Nacional
de La Plata, Argentina, and the Walther Cancer Research
Center, University of Notre Dame. The computations were
performed on Kraken (a Cray XT5) at the National Institute
for Computational Sciences (http://www.nics.tennessee.edu/)
and on Queen Bee at the Louisiana Optical Network
Initiative. Generous allocation of computing resources by
the Center for Research Computing at the University of Notre
Dame is also acknowledged. Work from CTS lab has been
financed by an European Union grant of the seventh FP
programme (Metoxia project).
(17) Casini, A.; Winum, J.-Y.; Montero, J.-L.; Scozzafava, A.; Supuran,
C. T. Carbonic anhydrase inhibitors: inhibition of cytosolic isozymes
I and II with sulfamide derivatives. Bioorg. Med. Chem. Lett. 2003,
13, 837–840.
(18) Gavernet, L.; Dominguez Cabrera, J.; Bruno Blanch, L.; Estiu´, G. 3D-
QSAR design of novel antiepileptic sulfamides. Bioorg. Med. Chem.
2007, 15, 1556–1567.
(19) Gavernet, L.; Barrios, I.; Sella Cravero, M.; Bruno Blanch, L. Design,
synthesis, and anticonvulsant activity of some sulfamides. Bioorg. Med.
Chem. 2007, 15, 5604–5614.
(20) Barrios, I. A.; Rocha Arrieta, L.; Bruno-Blanch, L. E. Unpublished
results.
(21) Khalifah, R. G. The carbon dioxide hydration activity of carbonic
anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes
B and C. J. Biol. Chem. 1971, 246, 2561–2573.
(22) Innocenti, A.; Vullo, D.; Pastorek, J.; Scozzafava, A.; Pastorekova,
S.; Nishimori, I.; Supuran, C. T. Carbonic anhydrase inhibitors.
Inhibition of transmembrane isozymes XII (cancer-associated) and XIV
with anions. Bioorg. Med. Chem. Lett. 2007, 17, 1532–1537.
(23) Supuran, C. T. Carbonic anhydrases: novel therapeutic applications
for inhibitors and activators. Nat. ReV. Drug DiscoVery 2008, 7, 168–
181.
(24) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.;
Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian
Genetic Algorithm and and Empirical Binding Free Energy Function.
J. Comput. Chem. 1998, 1639–1662.
(25) Jude, K. M.; Banerjee, A. L.; Haldar, M. K.; Manokaran, S.; Roy, B.;
Mallik, S.; Srivastava, D. K.; Christianson, D. W. Ultrahigh Resolution
Crystal Structures of Human Carbonic Anhydrases I and II Complexed
with “Two-Prong” Inhibitors Reveal the Molecular Basis of High
Affinity. J. Am. Chem. Soc. 2006, 128, 3011–3018.
Supporting Information Available: Additional figures
that describe the interactions of the ligands in the CAII active
site. This information is available free of charge via the
REFERENCES AND NOTES
(1) Lindskog, S.; Henderson, L. E.; Kannan, K. K.; Liljas, A.; Nyman,
P. O.; Strandberg, B. Carbonic anhydrase. In The Enzymes, 3rd ed.;
Boyer, P. D., Ed.; Academic Press: New York, 1971; Vol. 3, pp 587-
665.
(2) Pocker, Y.; Sarkanen, S. Carbonic anhydrase: structure, catalytic
versatility, and inhibition. AdV. Enzymol. Relat. Areas Mol. Biol. 1978,
47, 149–274.
(3) Sly, W. S.; Hu, P. Y. Human carbonic anhydrases and carbonic
anhydrase deficiencies. Annu. ReV. Biochem. 1995, 64, 375–401.
(4) Supuran, C. T.; Scozzafava, A. Carbonic anhydrase inhibitors and their
therapeutic potential. Expert Opin. Ther. Pat. 2000, 10, 575–600.
(5) Supuran, C. T.; Scozzafava, A.; Cassini, A. Carbonic anhydrase
inhibitors. Med. Res. ReV. 2003, 23, 146–189.
(6) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T. Carbonic
anhydrase: current state of the art, therapeutic applications and future
prospects. J. Enzyme Inhib. Med. Chem. 2004, 19, 199–229.
(7) Supuran, C. T.; Scozzafava, A. Carbonic anhydrases as targets for
medicinal chemistry. Bioorg. Med. Chem. 2007, 15, 4336–4350, and
references cited therein.
(8) Hartsough, D. S.; Merz, K. M., Jr. Dynamic Force Field Models:
Molecular Dynamics Simulations of Human Carbonic Anhydrase II
Using a Quantum Mechanical/Molecular Mechanical Coupled Poten-
tial. J. Phys. Chem. 1995, 99, 11266–11275.
(9) Jackman, J. E.; Merz, K. M.; Fierke, C. A. Disruption of the active
site solvent network in carbonic anhydrase II decreases the efficiency
of proton transfer. Biochemistry 1996, 35, 16421–16428.
(10) Peng, Z.; Merz, K. M.; Banci, L. Binding of cyanide, cyanate, and
thiocyanate to human carbonic anhydrase II. Proteins 1993, 17, 203–
216.
(11) Rossi, K. A.; Merz, K. M.; Smith, G. M.; Baldwin, J. J. Application
of the free energy perturbation method to human carbonic anhydrase
II inhibitors. J. Med. Chem. 1995, 38, 2061–2069.
(12) Oltulu, O.; Yasar, M. M. Eroglu, E.A QSAR study on relationship
between structure of sulfonamides and their carbonic anhydrase
inhibitory activity using the eigenvalue (EVA) method. Eur. J. Med.
Chem. 2009, 44, 3439–3444.
(26) Schafmeister, C.; Ross, W. S.; Romanovski, V. LEaP; University of
California: San Francisco, 1995.
(27) Quality Atomic Charges, Proton Assignment and Canonicalization,
QuACPAC; OpenEye Scientific Software, Inc.: Santa Fe, NM, 2007.
(28) Mohamadi, F.; Richards, N. G.; Guida, W. C.; Liskamp, R.; Lipton,
M.; Caufiel, C.; Chang, G.; Hendrickson, T.; Still, W. C. Macromodel:
An Integrated Software System for Modeling Organic and Bioorganic
Molecules Using Molecular Mechanics. J. Comput. Chem. 1990, 11,
440–467.
(29) Jorgensen, W. L.; Tirado-Rives, J. Potential energy functions for
atomic-level simulations of water and organic and biomolecular
systems. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665–6670.
(30) Shenkin, P. S.; McDonald, D. Q. Cluster Analysis of Molecular
Conformations. J. Comput. Chem. 1994, 15, 899–916.
(31) Case, D. A.; Darden, T. A.; Cheatham, I. T. E.; Simmerling, C. L.;
Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang,
W.; Merz, K. M. J.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.;
Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell,
S.; Steinbrecher, H.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.;
Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin,
V.; Kollman, P. A. AMBER 10; University of California: San
Francisco, CA, 2008.
(32) Jorgensen, W. L. C. J.; Madura, J.; Impey, R. W.; Klein, M. L.
Comparison of simple potential functions for the simulation of liquid
water. J. Chem. Phys. 1983, 79, 926–935.
(33) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.
Development and testing of a general AMBER force field. J. Comput.
Chem. 2004, 25, 1157–1174.
(34) Bayly, C. A.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A well
behaved elestrostatic potential based method using charge restraints
for deriving atomic charges: The RESP model. J. Phys. Chem. 1993,
97, 10269–10280.
(35) Fox, T.; Kollman, P. A. Application of RESP Methodology in the
Parametrization of Organic Solvents. J. Phys. Chem. B 1998, 102,
8070–8079.
(13) Eroglu, E.; Turkmen, H. A DFT-based quantum theoretic QSAR study
of aromatic and heterocyclic sulfonamides as carbonic anhydrase
inhibitors. J. Mol. Graphics Modell. 2007, 26, 701–708.
(14) Tuccinardi, T.; Nuti, E.; Ortore, G.; Supuran, C. T.; Rossello, A.;
Martinelli, A. Analysis of Human Carbonic Anhydrase II: Docking
Reliability and Receptor-Based 3D-QSAR Study. J. Chem. Inf. Model.
2007, 47, 515–525.
(15) Singh, J.; Shaik, B.; Singh, S.; Sikhima, S.; Agrawal, V. K.;
Khadikar, P. V.; Supuran, C. T. QSAR studies on the activation of
the human carbonic anhydrase cytosolic isoforms I and II and
secretory isozyme VI with amino acids and amines. Bioorg. Med.
Chem. 2007, 15, 6501–9.
(36) Becke, A. D.; Yarkony, D. R. In Modern Electronic Structure Theory
Part II; World Scientific: Singapore, 1995.
(37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,
V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene,
M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala,
P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
(16) Winum, J. Y.; Temperini, C.; El Cheikh, K.; Innocenti, A.; Vullo, D.;
Ciattini, S.; Montero, J. L.; Scozzafava, A.; Supuran, C. T. Carbonic
Anhydrase Inhibitors: Clash with Ala65 as a Means for Designing