Chemical Science
Edge Article
N4-Boc deprotection, and broader substrate scope. The result-
ing piperazinones can be transformed into valuable chiral gem-
disubstituted piperazines that are anticipated to provide ster-
eodened access to new chemical space in drug discovery.
Similarly, the tetrahydropyrimidinone scaffold could be hydro-
Chem. Commun., 2013, 4, 515–519; (e) S. Monteleone,
J. E. Fuchs and K. R. Liedl, Front. Pharmacol., 2017, 8, 552.
6 Using the drugbank.ca database, we curated a structure
search of piperazine-containing small molecule drugs. Out
of 98 drugs, none were gem-disubstituted on the piperazine
ring.
lyzed to provide access to corresponding protected and free b2,2
-
amino acids. We anticipate this decarboxylative allylic alkyl-
ation protocol will nd utility in the eld of medicinal chemistry
as well as in natural products synthesis.
7 For a review, see: (a) K. E. Gettys, Z. Ye and M. Dai, Synthesis,
2017, 49, 2589–2604; (b) R. Holl, D. Schepmann and
¨
B. Wunsch, Med. Chem. Commun., 2012, 3, 673–679; (c)
G. Sudhakar, S. Bayya, K. J. Reddy, B. Sridhar, K. Sharma
and S. R. Bathula, Eur. J. Org. Chem., 2014, 1253–1265; (d)
S. Chamakuri, P. Jain, S. K. Reddy Guduru, J. W. Arney,
K. R. MacKenzie, C. Santini and D. W. Young, J. Org.
Chem., 2018, 83, 6541–6555; (e) R. Kuwano and Y. Ito,
J. Org. Chem., 1999, 64, 1232–1237; (f) W.-X. Huang,
L.-J. Liu, B. Wu, G.-S. Feng, B. Wang and Y.-G. Zhou, Org.
Lett., 2016, 18, 3082–3085; (g) T. D. Montgomery and
V. H. Rawal, Org. Lett., 2016, 18, 740–743; (h) J. S. Nakhla
and J. P. Wolfe, Org. Lett., 2007, 9, 3279–3282; (i)
B. M. Cochran and F. E. Michael, Org. Lett., 2008, 10, 329–
332; (j) B. P. McDermott, A. D. Campbell and A. Ertan,
Synlett, 2008, 875–879; (k) J. D. Firth, P. O'Brien and
L. Ferris, J. Am. Chem. Soc., 2016, 138, 651–659.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
The NIH-NIGMS (R01GM080269) and Caltech are thanked for
support of our research program. Additionally, A. W. S. thanks
the NIH-NIGMS for a predoctoral fellowship (Ruth L. Kirsch-
stein Institutional National Research Service Award
F30GM120836) and a UCLA-Caltech Medical Scientist Training
Program Fellowship (T32GM008042). S. N. H. thanks the Bayer
Foundation for an Otto Bayer Scholarship. Dr David Vander-
Velde is thanked for assistance with structural assignments via
NMR analysis. Dr Scott Virgil, Dr Marchello Cavitt, Dr Brendan
O'Boyle, Dr Justin Hilf, Dr Corey Reeves, and Kevin Yang are
thanked for helpful discussions.
8 (a) J. Meyers, M. Carter, N. Y. Mok and N. Brown, Future Med.
Chem., 2016, 8, 1753–1767; (b) C. M. Marson, in Advances in
Heterocyclic Chemistry, ed. E. F. V. Scriven and C. A.
Ramsden, Academic Press, 2017, pp. 13–33; (c) C.-V. T. Vo
and J. W. Bode, J. Org. Chem., 2014, 79, 2809–2815.
9 (a) W.-Y. Siau and J. W. Bode, J. Am. Chem. Soc., 2014, 136,
17726–17729; (b) K. Geoghegan and J. W. Bode, Org. Lett.,
2015, 17, 1934–1937; (c) S.-Y. Hsieh and J. W. Bode, Org.
Lett., 2016, 18, 2098–2101.
Notes and references
1 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem.,
2014, 57, 10257–10274.
¨
10 S. A. Ruider, S. Muller and E. M. Carreira, Angew. Chem., Int.
2 (a) S. Omura, A. Hirano, Y. Iwai and R. Masuma, J. Antibiot.,
1979, 32, 786–790; (b) T. Chiba, Y. Asami, T. Suga,
Y. Watanabe, T. Nagai, F. Momose, K. Nonaka,
Ed., 2013, 52, 11908–11911.
11 K. M. Korch, C. Eidamshaus, D. C. Behenna, S. Nam,
D. Horne and B. M. Stoltz, Angew. Chem., Int. Ed., 2015, 54,
179–183.
¯
M. Iwatsuki, H. Yamada, S. Omura and K. Shiomi, Biosci.,
Biotechnol., Biochem., 2017, 81, 59–62; (c) X. Yu, F. Liu,
Y. Zou, M.-C. Tang, L. Hang, K. N. Houk and Y. Tang,
J. Am. Chem. Soc., 2016, 138, 13529–13532.
3 M. A. Grady, T. L. Gasperoni and P. Kirkpatrick, Nat. Rev.
Drug Discovery, 2003, 2, 427–428.
4 (a) H. Wang, M. D. Kowalski, A. S. Lakdawala, F. G. Vogt and
L. Wu, Org. Lett., 2015, 17, 564–567; (b) R. E. Ziegler,
B. K. Desai, J.-A. Jee, B. F. Gupton, T. D. Roper and
T. F. Jamison, Angew. Chem., Int. Ed., 2018, 57, 7181–7185.
5 (a) K. Hirata, M. Kotoku, N. Seki, T. Maeba, K. Maeda,
S. Hirashima, T. Sakai, S. Obika, A. Hori, Y. Hase, et al.,
ACS Med. Chem. Lett., 2016, 7, 23–27; (b) A. W. Hung,
A. Ramek, Y. Wang, T. Kaya, J. A. Wilson, P. A. Clemons
and D. W. Young, Proc. Natl. Acad. Sci. U. S. A., 2011, 108,
6799–6804; (c) F. Lovering, J. Bikker and C. Humblet,
J. Med. Chem., 2009, 52, 6752–6756; (d) F. Lovering, Med.
´
12 (a) B. Weiner, W. Szymanski, D. B. Janssen, A. J. Minnaard
and B. L. Feringa, Chem. Soc. Rev., 2010, 39, 1656–1691; (b)
D. L. Steer, R. A. Lew, P. Perlmutter, A. I. Smith and
M.-I. Aguilar, Curr. Med. Chem., 2002, 9, 811–822; (c)
D. Seebach, A. K. Beck and D. J. Bierbaum, Chem.
Biodiversity, 2004, 1, 1111–1239.
13 (a) J.-S. Yu, H. Noda and M. Shibasaki, Angew. Chem., Int. Ed.,
2018, 57, 818–822; (b) M. Nascimento de Oliveira,
S. Arseniyadis and J. Cossy, Chem.–Eur. J., 2018, 24, 4810–
4814.
14 (a) A. Guggisberg, K. Drandarov and M. Hesse, Helv. Chim.
Acta, 2000, 83, 3035–3042; (b) K. Drandarov, A. Guggisberg
and M. Hesse, Helv. Chim. Acta, 2002, 85, 979–989.
15 J. R. Cabrera-Pardo, A. Trowbridge, M. Nappi, K. Ozaki and
M. J. Gaunt, Angew. Chem., Int. Ed., 2017, 56, 11958–11962.
792 | Chem. Sci., 2019, 10, 788–792
This journal is © The Royal Society of Chemistry 2019