Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
DOI: 10.1039/C9CC09103C
from AMED under Grant Number JP19am0101084.
knowledge, for the first time a DKR of a tertiary alcohol was
successfully carried out.
Conflicts of interest
There are no conflicts to declare.
O
L
V
O
O
pore
size:
4nm
Si
Si
O
Notes and references
OH
lipase
CAL-A
V-MPS4
1
Overviews: a) I. Ojima (ed.), Catalytic Asymmetric Synthesis,
3rd ed., John Wiley & Sons, Hoboken, New Jersey, 2010; b) H.
U. Blaser, H.-J. Federsel (eds.), Asymmetric Catalysis on
Industrial Scale: Challenges, Approaches and Solutions, 2nd
ed., Wiley-VCH, Weinheim, 2010; c) K. Sugiyama, Y. Oki, S.
Kawanishi, K. Kato, T. Ikawa, M. Egi, S. Akai, Catal. Sci.
Technol. 2016, 6, 5023-5030; d) Y.-L. L, Liu, X. Touglin, Adv.
Synth. Catal. 2019, 361, 876-918.
a) D.J. Ramón, M. Yus, Angew. Chem. Int. Ed. 2004, 43, 284-
287; b) Review: O. Riant, J. Hannedouche, Org. Biomol.
Chem. 2007, 5, 873-888; c) J. Christoffers, A. Mann, Angew.
Chem. Int. Ed. 2001, 40, 4591-4597; d) Review: J.
Christoffers, A. Baro, Adv. Synth. Catal. 2005, 347, 1473-
1482.
OH
sequential addition of
chemo- & biocatalyst
1
(S)-
23%
1
rac-
in portions
66% ee
0.08 M
(for details, see text & experim. part)
+
+
25 °C, 312 h
O
O
diisopropyl ether
O
2
O
10 eq.
2
(R)-
77%
> 99% ee
3
4
N. Yasuda, L. Tan in: The Art of Process Chemistry, Wiley-
VCH, Weinheim, 2011, chapter 1, p. 1-43.
Scheme 3. DKR of rac-1 in a sequential batch process. All reactions were done with a
stirring rate of 1200 rpm under an argon atmosphere.
Reviews: a) I. Hussain, J.-E. Bäckvall in: Enzyme Catalysis in
Organic Synthesis (eds.: K. Drauz, H. Gröger and O. May), 3rd
ed., vol. 2, Wiley-VCH, Weinheim, 2012, chapter 43, p. 1777;
b) S. Akai, Chem. Lett. 2014, 43, 746-754; c) O. Verho, J.-E.
Bäckvall, J. Am. Chem. Soc. 2015, 137, 3996-4009; d) S.
Takizawa, H. Gröger, H. Sasai, Chem. Eur. J. 2015, 21, 8992-
8997; e) A. S. de Miranda, L. S. M. Miranda, R. O. M. A. de
Souza, Biotechnol. Adv. 2015, 33, 372-393; f) S. Akai in
“Future Directions in Biocatalysis, 2nd ed.” Ed. by Matsuda, T.,
Elsevier: Amsterdam, 2017, Chapter 16; g) Z. S. Seddigi, M. S.
Malik, S. A. Ahmed, A.O. Babalghith, A. Kamal, Coordination
Chem. Rev. 2017, 348, 54-70.
In conclusion, the first example of a DRK of a tertiary alcohol,
exemplified for the transformation of rac-1 into (R)-2, has been
achieved. The concept is based on a chemoenzymatic approach
combining a lipase-catalyzed resolution and an oxovanadium-
catalyzed racemization. In a sequential batch process with a
stepwise addition of the catalysts in various portions, we could
overcome the limitations caused by the deactivation of the
biocatalyst CAL-A under the process conditions. The continuous
addition of fresh, active CAL-A ensures that kinetic resolution
can take place permanently in combination with the desired
racemization, so that a final conversion of 77% to the desired
acetate (R)-2 with an excellent ee-value of >99% ee was
achieved, thus representing a proof-of-concept for such a DKR.
Tasks for future work are the improvement of the reaction
conditions and the extension of this method to other
substrates. As a major hurdle is not the DKR itself but the
stability of enzyme and, in part, esters, as well as the substrate
scope13 of enzyme and racemization catalyst. Thus, currently
our major focus is on developing CAL-A mutants and vanadium
catalysts with improved performance in the DKR.
5
6
L. E. Larsson, B. A. Persson, J. E. Bäckvall, Angew. Chem. Int.
Ed. 1997, 36, 1211-1212.
a) S. Kim, Y. K. Choi, J. Hong, J. Park, M.-J. Kim, Tetrahedron
Lett. 2013, 54, 1185-1188, b) Y. Kim, J. Park, M.-J. Kim,
ChemCatChem 2011, 3, 271-277; c) J. H. Choi, Y. H. Kim, S.H.
Nam, S. T. Shin, M.-J. Kim, J. Park, Angew. Chem. Int. Ed.
2002, 41, 2373-2376.
7
8
9
A. Berkessel, M. L. Sebastian-Ibarz, T. N. Müller, Angew.
Chem. Int. Ed. 2006, 45, 6567-6570.
T. Görbe, T. Lihammar, J.-E. Bäckvall, Chem. Eur. J. 2018, 24,
77-80.
Selected examples: a) S. Akai, K. Tanimoto, Y. Kanao, M. Egi,
T. Yamamoto, Y. Kita, Angew. Chem. Int. Ed. 2006, 45, 2592-
2595; b) S. Akai, R. Hanada, N. Fujiwara, Y. Kita, M. Egi, Org.
Lett. 2010, 12, 4900-4903; c) M. Egi, K. Sugiyama, M. Saneto,
R. Hanada, K. Kato, S. Akai, Angew. Chem. Int. Ed. 2013, 52,
3654-3658; d) S. Kawanishi, S. Oki, D. Kundu, S. Akai, Org.
Lett. 2019, 21, 2978-2982.
Acknowledgements
10 a) D. Özdemirhan, S. Sezer, Y. Sönmez, Tetrahedron:
Asymmetry 2008, 19, 2717-2720; b) D. Özdemirhan, Synth.
Commun. 2017, 47, 629-645.
11 For an excellent overview about the field of enantioselective
synthesis of tertiary alcohols using hydrolases, see: R.
Kourist, P. Domínguez de María, U. T. Bornscheuer,
ChemBioChem 2008, 9, 491-498.
12 F. Preuss, H. Noichl, Z. Naturforsch. 1987, 42b, 121-129.
13 The challenge of the substrate scope is illustrated by some
selected examples in the Supporting Information.
The authors gratefully acknowledge generous support from the
German Academic Exchange Service (DAAD) and Japan Society
for the Promotion of Science (JSPS) within the joint DAAD-JSPS
funding program “DAAD PPP Japan 2017/2018” (DAAD grant no.
57345562). S.A. also acknowledges financial supports by JSPS
KAKENHI 18H02556 and Platform Project for Supporting Drug
Discovery and Life Science Research (Basis for Supporting
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins