the structurally much more rigid fluorephores upon acid
complexation, the suppressed excited state proton transfer
and the isolation of the fluorophores in the solid state. This
work has provided a better understanding for the mechanism
of the fluorescence response of the BINOL-based sensors.
HLL, QLZ and XLH thank the support of this work from
the National Natural Science Foundation of China (20872161,
20821002, 21032007), the Major Basic Research Development
Program (2010CB833300) and Chinese Academy of Sciences.
LP acknowledges the partial support of the US National
Science Foundation (CHE-0717995).
Fig. 3 Structures of various BINOL-derivatives.
Notes and references
showed 1 : 3 ratio between (S)-6 and (S)-MA or (R)-MA in the
precipitate.
1 (a) Photoinduced Electron Transfer. Parts A–D, ed. M. A. Fox and
M. Chanon, Elsevier, Amsterdam, Netherlands, 1988;
(b) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratna, P. L.
M. Lynch, G. E. M. Maguire, C. P. McCoy and K. R. A.
S. Sandanayake, Top. Current Chem., 1993, 168, 223–264;
(c) A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302–308.
2 (a) A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem.
Commun., 1986, 1709–1710; (b) S.-I. Kondo, T. Kinjo and
Y. Yano, Tetrahedron Lett., 2005, 46, 3183–3186.
The fluorescence spectra of (S)-6 in the presence of (S)- and
(R)-MA were measured. The suspension of (S)-6 with (R)-MA
exhibited large fluorescence enhancement but that of (S)-6
with (S)-MA showed almost no change in intensity (Fig. 4).
Thus, the fluorescence responses of (S)-6 towards the enantiomers
of MA are highly enantioselective with IR/IS
= 6.8
(Fig. 4a).6,10 The intermolecular complex of (S)-6 + (R)-MA
might be structurally more rigid than that of (S)-6 + (S)-MA,
giving rise to the much greater fluorescence. The enantio-
selectivity of the major-groove BINOL molecule (S)-6 is opposite
to that of its minor-groove analog (S)-3 where (S)-MA causes
large fluorescence enhancement but (R)-MA doesn’t. Thus, the
sensor-substrate bindings in (S)-3 and (S)-6 are very different.
The unobserved fluorescence enhancement of (S)-3 or (S)-6 in
the presence of the chirality-mis-matched MA also demonstrates
that merely protonating the nitrogen atoms in the BINOL-
amine sensors cannot enhance the fluorescence and there is no
acid-suppressed PET with the use of these sensors.
3 D. Rehm and A. Weller, Israel J. Chem., 1970, 8, 259–271.
4 (a) A. Adenier, M. M. Chehimi, I. Gallardo, J. Pinson and N. Vila,
Langmuir, 2004, 20, 8243–8253; (b) R. E. Sioda and
B. Frankowska, J. Electroanal. Chem., 2004, 568, 365–370.
5 (a) T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Nature,
1995, 374, 345–347; (b) H. L. Liu, X. L. Hou and L. Pu, Angew.
Chem., Int. Ed., 2009, 48, 382–385.
6 Selected references on enantioselective fluorescent sensors:
(a) L. Pu, Chem. Rev., 2004, 104, 1687–1716; (b) J. Z. Zhao,
M. G. Davidson, M. F. Mahon, G. Kociok-Kohn and
¨
T. D. James, J. Am. Chem. Soc., 2004, 126, 16179–16186;
(c) X. Mei and C. Wolf, J. Am. Chem. Soc., 2004, 126,
14736–14737; (d) M. T. Reetz and S. Sostmann, Tetrahedron,
2001, 57, 2515–2520; (e) S. Pagliari, R. Corradini, G. Galaverna,
S. Sforza, A. Dossena, M. Montalti, L. Prodi, N. Zaccheroni and
R. Marchelli, Chem.–Eur. J., 2004, 10, 2749–2758.
In summary, we have incorporated amino alcohol units to
the major groove of BINOL to construct new chiral fluorescent
sensors. Fluorescent study of these compounds has clarified a
previous misconception: The commonly accepted acid inhibition
of the PET fluorescence quenching in the aryl-amine sensors is
not involved in the fluorescent responses of the BINOL-amine
based sensors at all! This is consistent with the thermodynamic
argument on the basis of the oxidation potentials of the amine
donors and the naphthol acceptors. The introduction of a
hydroxyl group to naphthalene has significantly decreased
its oxidation potential and makes the electron-transfer to
its excited state from an amine unfavorable. The greatly
enhanced fluorescence of (S)-3 and (S)-6 in the presence of
the chirality-matched MA should be due to the formation of
7 (a) H. Ishitani, M. Ueno and S. Kobayashi, J. Am. Chem. Soc.,
2000, 122, 8180–8186; (b) C. Dong, J. Zhang, W. Zheng, L. Zhang,
Z. Yu, M. C. K. Choi and A. S. C. Chan, Tetrahedron: Asymmetry,
2000, 11, 2449–2454; (c) X. Liang, T. D. James and J. Zhao,
Tetrahedron, 2008, 64, 1309–1315.
8 (a) W. Iwanek and J. Mattay, J. Photochem. Photobiol., A, 1992,
67, 209–226; (b) M. Ofran and J. Feitelson, Chem. Phys. Lett.,
1973, 19, 427–431; (c) K. M. Solntsev, E.-A. Bartolo, G. Pan,
G. Muller, S. Bommireddy, D. Huppert and L. M. Tolbert, Isr.
J. Chem., 2009, 49, 227–233; (d) M. Flegel, M. Lukeman and
P. Wan, Can. J. Chem., 2008, 86, 161–169; (e) Y. Xu and
M. E. McCarroll, J. Photochem. Photobiol., A, 2006, 178,
50–56.
9 (a) Z.-B. Li, J. Lin, H.-C. Zhang, M. Sabat, M. Hyacinth and
L. Pu, J. Org. Chem., 2004, 69, 6284–6293; (b) Z.-B. Li, J. Lin,
M. Sabat, M. Hyacinth and L. Pu, J. Org. Chem., 2007, 72,
4905–4916.
10 Selected examples for the enantioselective recognition of a-hydroxy-
carboxylic acids: (a) J. Lin, Q.-S. Hu, M.-H. Xu and L. Pu, J. Am.
Chem. Soc., 2002, 124, 2088–2089; (b) L. Zhu and E. V. Anslyn,
J. Am. Chem. Soc., 2004, 126, 3676–3677; (c) F. Taran,
C. Gauchet, B. Mohar, S. Meunier, A. Valleix, P. Y. Renard,
C. Creminon, J. Grassi, A. Wagner and C. Mioskowski, Angew.
´
Chem., Int. Ed., 2002, 41, 124–127; (d) D. Yang, X. Li, Y.-F. Fan
and D.-W. Zhang, J. Am. Chem. Soc., 2005, 127, 7996–7997;
(e) S. Shirakawa, A. Moriyama and S. Shimizu, Org. Lett., 2007,
9, 3117–3119; (f) K. Dhara, K. Sarkar, P. Roy, M. Nandi,
A. Bhaumik and P. Banerjee, Tetrahedron, 2008, 64, 3153–3159;
(g) L. Chi, J. Z. Zhao and T. D. James, J. Org. Chem., 2008, 73,
4684–4687; (h) A. A. Williams, S. S. Fakayode, M. Lowry and
I. M. Warner, Chirality, 2009, 21, 305–315; (i) H.-L. Liu, Q. Peng,
Y.-D. Wu, D. Chen, X.-L. Hou, M. Sabat and L. Pu, Angew.
Chem. Int. Ed., 2010, 49, 602–606.
Fig. 4 (a) Fluorescence spectra of (S)-6 (2.0 ꢁ 10ꢀ4 M) with (R)- and
(S)-MA at 4.0 ꢁ 10ꢀ3 M. (b) Fluorescence responses of (S)-6 (2.0 ꢁ
10ꢀ4 M) at 381 nm toward (R)- and (S)-MA at various concentrations.
(Solvent: benzene containing 0.4% DME. lexc = 341 nm, slit:
5.0/5.0 nm).
c
3648 Chem. Commun., 2011, 47, 3646–3648
This journal is The Royal Society of Chemistry 2011