COMMUNICATIONS
c) T. Inamoto, S. Papineni, S. Chintharlapalli, S.-D.
Cho, S. Safe, A. M. Kamat, Mol. Cancer. Ther. 2008, 7,
3825–3833; d) P. M. Wood, L. L. Woo, J.-R. Labrosse,
M. N. Trusselle, S. Abbate, G. Longhi, E. Castiglioni, F.
Lebon, A. Purohit, M. J. Reed, J. Med. Chem. 2008, 51,
4226–4238; e) S. D. Cho, S.-O. Lee, S. Chintharlapalli,
M. Abdelrahim, S. Khan, K. Yoon, A. M. Kamat, S.
Safe, Mol. Pharmacol. 2010, 77, 396–404; f) P. M.
Wood, L. Woo, M. P. Thomas, M. F. Mahon, A. Purohit,
B. V. Potter, ChemMedChem 2011, 6, 1423–1438; g) K.
Takahashi, G. Yamagishi, T. Hiramatsu, A. Hosoya, K.
Onoe, H. Doi, H. Nagata, Y. Wada, H. Onoe, Y. Wata-
nabe, Bioorg. Med. Chem. 2011, 19, 1464–1470; h) K.
Yoon, S.-O. Lee, S.-D. Cho, K. Kim, S. Khan, S. Safe,
Carcinogenesis 2011, 32, 836–842.
a range of useful triarylmethanes with excellent yields
and enantioselectivities. In addition, this study also
verified that the oil-water biphase could significantly
improve the efficiency of this catalytic system. This
study further underlines a new route for highly enan-
tioselective syntheses of triarylmethanes involving o-
QMs, and also proves the significance of the oil-water
biphase for the chiral bifunctional amine-squaramide
catalysts.
Experimental Section
Catalytic Enantioselective Friedel–Crafts Alkylation
Reaction based on ortho-Quinone Methides
[4] S. B. Bodendiek, C. Rubinos, M. P. Trelles, N. Coleman,
D. P. Jenkins, H. Wulff, M. Srinivas, Front. Pharma-
col.2012, 3, 106.
To
a test tube were added catalyst Vd (0.005 mmol,
5 mol%), K2CO3 (2.5 equiv., 0.25 mmol), the substituted 2-
[phenyl(tosyl)methyl]phenol 1 (0.1 mmol) and b-naphthol 2
(1.2 equiv., 0.12 mmol), 1.0 mL CH2Cl2 and 1.0 mL H2O
were then added through a syringe. The resulting mixture
was stirred at room temperature for 4–6 h until the reaction
was completed (monitored by TLC). Then the mixture was
extracted with CH2Cl2, and the organic layer was dried over
anhydrous Na2SO4, filtered and concentrated under reduced
pressure. The crude product was purified by flash chroma-
tography to afford the product 3. The enantiomeric excess
was determined by HPLC using a Chiralpak IC-H, AS-H or
AD-H column.
[5] a) V. Nair, K. Abhilash, N. Vidya, Org. Lett. 2005, 7,
5857–5859; b) T. Niwa, H. Yorimitsu, K. Oshima, Org.
Lett. 2007, 9, 2373–2375; c) J.-Y. Yu, R. Kuwano, Org.
Lett. 2008, 10, 973–976; d) G. I. McGrew, J. Temaismi-
thi, P. J. Carroll, P. J. Walsh, Angew. Chem. 2010, 122,
5673–5676; Angew. Chem. Int. Ed. 2010, 49, 5541–5544;
e) J. Zhang, A. Bellomo, A. D. Creamer, S. D. Dreher,
P. J. Walsh, J. Am. Chem. Soc. 2012, 134, 13765–13772;
f) S. Tabuchi, K. Hirano, T. Satoh, M. Miura, J. Org.
Chem. 2014, 79, 5401–5411; g) J. Zhang, A. Bellomo, N.
Trongsiriwat, T. Jia, P. J. Carroll, S. D. Dreher, M. T.
Tudge, H. Yin, J. R. Robinson, E. J. Schelter, J. Am.
Chem. Soc. 2014, 136, 6276–6287.
[6] S. Saha, S. K. Alamsetti, C. Schneider, Chem. Commun.
2015, 51, 1461–1464.
Acknowledgements
[7] a) M.-H. Zhuo, Y.-J. Jiang, Y.-S. Fan, Y. Gao, S. Liu, S.
Zhang, Org. Lett. 2014, 16, 1096–1099; b) S. Qi, C.-Y.
Liu, J.-Y. Ding, F.-S. Han, Chem. Commun. 2014, 50,
8605–8608.
[8] a) B. L. Taylor, M. R. Harris, E. R. Jarvo, Angew.
Chem. 2012,124, 7910–7913; Angew. Chem. Int. Ed.
2012, 51, 7790–7793; b) M. R. Harris, L. E. Hanna,
M. A. Greene, C. E. Moore, E. R. Jarvo, J. Am. Chem.
Soc. 2013, 135, 3303–3306.
The research was supported by National Natural Science
Foundation of China (21402176) and Natural Science Foun-
dation of Zhejiang Province (LY14B020003) and Zhejiang
Key Course of Chemical Engineering and Technology, as
well as Key Laboratory of Green Pesticides and Cleaner Pro-
duction Technology of Zhejiang Province.
[9] Q. Zhou, H. D. Srinivas, S. Dasgupta, M. P. Watson, J.
Am. Chem. Soc. 2013, 135, 3307–3310.
References
[10] a) M. Nambo, C. M. Crudden, Angew. Chem. 2014, 126,
761–765; Angew. Chem. Int. Ed. 2014, 53, 742–746;
b) S. C. Matthew, B. W. Glasspoole, P. Eisenberger,
C. M. Crudden, J. Am. Chem. Soc. 2014, 136, 5828–
5831.
[1] a) D. F. Duxbury, Chem. Rev. 1993, 93, 381–433; b) M.
Shchepinov, V. Korshun, Chem. Soc. Rev. 2003, 32,
170–180; c) Y.-Q. Xu, J.-M. Lu, N.-J. Li, F. Yan, X.-W.
Xia, Q.-F. Xu, Eur. Polym. J. 2008, 44, 2404–2411;
d) S. A. Snyder, S. P. Breazzano, A. G. Ross, Y. Lin,
A. L. Zografos, J. Am. Chem. Soc. 2009, 131, 1753–
1765.
[2] a) A. K. Srivastava, R. Sharma, R. Mishra, A. K. Bala-
pure, P. S. Murthy, G. Panda, Bioorg. Med. Chem. 2006,
14, 1497–1505; b) M. K. Parai, G. Panda, V. Chaturvedi,
Y. Manju, S. Sinha, Bioorg. Med. Chem. Lett. 2008, 18,
289–292; c) R. Palchaudhuri, V. Nesterenko, P. J. Her-
genrother, J. Am. Chem. Soc. 2008, 130, 10274–10281.
[3] a) M. Recanatini, A. Cavalli, P. Valenti, Med. Res. Rev.
2002, 22, 282–304; b) S. D. Cho, K. Yoon, S. Chintharla-
palli, M. Abdelrahim, P. Lei, S. Hamilton, S. Khan,
S. K. Ramaiah, S. Safe, Cancer. Res. 2007, 67, 674–683;
[11] a) K. Fries, K. Kann, Justus Liebigs Ann. Chem. 1907,
353, 335–356; b) H. Amouri, Y. Besace, J. L. Bras, J.
Vaissermann, J. Am. Chem. Soc. 1998, 120, 6171–6172.
[12] For selected examples of using o-QMs as synthetic in-
termediates, see: a) B. B. Snider, Q. Lu, J. Org. Chem.
1996, 61, 2839–2844; b) H. Amouri, J. Le Bras, Acc.
Chem. Res. 2002, 35, 501–510; c) M. A. Marsini, Y.
Huang, C. C. Lindsey, K.-L. Wu, T. R. Pettus, Org. Lett.
2008, 10, 1477–1480; d) S. B. Ferreira, F. d. C. da Silva,
A. C. Pinto, D. T. Gonzaga, V. F. Ferreira, J. Heterocycl.
Chem. 2009, 46, 1080–1097; e) D. Richter, N. Hampel,
T. Singer, A. R. Ofial, H. Mayr, Eur. J. Org. Chem.
2009, 3203–3211; f) A. L. Lawrence, R. M. Adlington,
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢁ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!