Synthesis and Electrochromic Properties of Star-Shaped Oligothiophene Derivatives with Triphenylamine as Core
Guan and Liu
is found to undergo reversible, clear colour change on
electro-chemical doping and dedoping. Whereas 3TPA is
electropolymerized firstly, and then switches the colors
when the applied potential changed. These two star-shape
compounds based on thiophene and triphenylamine will be
the multipurpose materials attracted increasing attention.
before electrochromism
after electrochromism
Acknowledgments: This work was financially sup-
ported by the National Natural Science Foundation of
China (Nos. 20674022, 20774031 and 21074039), the Nat-
ural Science Foundation of Guangdong province (Nos.
S2013040013904, 2006A10702003, 2009B090300025 and
0
50
100
150
200
250
2
010A090100001) and the Ministry of Education of the
Temperature/ºC
People’s Republic of China (20090172110011).
Figure 7. DSC curves of 3TPA before and after electrochromism.
peaks at 319 nm and 425 nm occur upon applying pos-
itive potentials for P3TPA. As the potential is decreased
to −0ꢀ8 V, the absorption peak at 319 nm blue-shifts to
1
. P. R. Somani and S. Radhakrishnan, Mater. Chem. Phys. 2002, 117
(2002).
2
3
04 nm, while the other peak weakens. We describe possi-
3. B. Sankaran and J. R. Reynolds, Macromolecules, 30, 2582 (1997).
4. D. R. Rosseinsky and P. M. S. Monk, J. Electrochem. Soc. 147, 1595
ble electropolymerized mechanism of 3TPA in Scheme 3.
When a positive voltage is applied, 3TPA loses electrons
to form cation radicals, and then cation radicals react with
each other to generate dications, which rapidly obtain elec-
trons to form dimers. The dimers can also lose electrons to
generate cation radicals on positive potential. These reac-
tions are repeated continuously when the potential is main-
(2000).
5
6
. D. R. Rosseinsky and R. J. Mortimer, Adv. Mater. 13, 783 (2001).
. H. Meng, D. Tucker, S. Chaffins, Y. Chen, R. Helgeson, B. Dunn,
and F. Wudl, Adv. Mater. 15, 146 (2003).
7
8. R. Mortimer, J. Electrochim Acta. 44, 2971 (1999).
9. B. Yigitsoy, S. Varis, C. Tanyeli, I. M. Akhmedov, and L. Toppare,
tained until a polyme Dr ies li fvo er rme ed d b. Uy pP o un b ol i xs ihd i an t gi o Tn ,e t ch he nc oo lloo gr y to: ChTihninesSoelidUFniilvmes r5s1 i 5t y, 3 o8 9f 8H( 2o 0n0 g7 ).Kong
IP: 117.253.107.32 On: Mon 1, 0 2. 8P .DC ea mc u2r l0u 1, 5A .0 C8 i: r5p 4a n: ,2 0a nd L. Toppare, J. Electroanal. Chem.
of the polymer is navy blue at −0ꢀ8 V (reduction form),
Copyright: American Scie n5 t7i f2 i,c6 1P (u2 b0 0l i4s ) h. ers
and the color is yellow. The electrochromic mechanism is
11. O. Turkarslan, A. Erden, E. Sahin, and L. Toppare, J. Macromol.
Sci. 43, 115 (2006).
showed in Scheme 4. We can speculate from above results
that oligothiophenes without ꢁ-subtitution are easily elec-
tropolymerized when a potential is applied.
In order to prove the polymerization of 3TPA during
electrochromic process, DSC testing for P3TPA (com-
pound collected from the ITO slide after electrochromic
test) and 3TPA were studied, and the results are showed
12. Y. J. Shirota, Mater. Chem. 15, 75 (2005).
13. J. Roncali, P. Leriche, and A. Cravino, Adv. Mater. 19, 2045 (2007).
14. L. L. Xue, J. T. He, X. Gu, Z. F. Yang, B. Xu, and W. J. Tian,
J. Phys. Chem. C 113, 12911 (2009).
15. C. He, Q. G. He, Y. P. Yi, G. L. Wu, F. L. Bai, Z. G. Shuai, and
Y. F. Li, J. Mater. Chem. 18, 4085 (2008).
16. G. L. Wu, G. J. Zhao, C. He, J. Zhang, Q. G. He, X. M. Chen, and
Y. F. Li, Sol. Energy Mater. Sol. Cells. 93, 108 (2009).
17. Y. Yang, J. Zhang, Y. Zhou, G. J. Zhao, C. He, Y. F. Li, M. Andersson,
O. Inganas, and F. L. Zhang, J. Phys. Chem. C 114, 3701 (2010).
ꢀ
in Figure 7. There are two endothermic peaks at 148 C
ꢀ
ꢀ
and 180 C and one exothermic peak at 158 C observed
for 3TPA, while no any endothermic or exothermic peak
for P3TPA. The results in some way prove our speculation
about the polymerization of 3TPA.
18. K. Yamamoto, M. Higuchi, K. Uchida, and Y. Kojima, Macro-
molecules 35, 5782 (2002).
19. J. Zhang, D. Deng, C. He, Y. J. He, M. J. Zhang, Z. G. Zhang, Z. J.
Zhang, and Y. F. Li, Chem. Mater. 23, 817 (2011).
2
2
2
0. S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère, and
4
. CONCLUSION
J. Roncali, J. Am. Chem. Soc. 128, 3459 (2006).
1. A. Cravino, S. Roquet, P. Leriche, O. Alévêque, P. Frère, and
J. Roncali, Chem. Commun. 13, 1416 (2006).
2. H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, and Y. Shirota.
IEEE J. Se. Top. Quantum Electron. 16, 1528 (2010).
Two star-shaped oligothiophene derivatives with pheny-
lamine core, 3TPA and 3TPA-3CN, have been synthesized
and investigated in term of their electronic and optical
properties. Introduction of electron-drawing cyano group
to the ꢁ-position of thiophene unit makes the maximum
absorption of 3TPA-3CN red-shift in comparison with
that of 3TPA, but leads the oxidation potentials shift
to a little positive value. Both oligothiophene derivatives
reveals valuable electrochromic characteristics. 3TPA-3CN
23. B. B. Yin, C. Y. Jiang, Y. G. Wang, M. La, P. Liu, and W. J. Deng,
Synth. Met. 160, 432 (2010).
24. L. Guan, J. Wang, M. La, Y. P. Zhong, P. Liu, and W. J. Deng,
Mater. Sci. Forum 663, 369 (2011).
2
5. X. B. Sun, Y. Q. Liu, S. Y. Chen, W. F. Qiu, G. Yu, Y. Q. Ma, T. Qi,
H. J. Zhang, X. J. Xu, and D. B. Zhu, Adv. Funct. Mater. 16, 917
(2006).
Received: 23 September 2013. Accepted: 20 January 2014.
3034
J. Nanosci. Nanotechnol. 15, 3029–3034, 2015