Helv. Chim. Acta 2019, 102, e1900065
[4] B. Cecconi, N. Manfredi, T. Montini, P. Fornasiero, A.
22.70; 22.60; 21.06; 19.50; 14.21. MALDI-MS: 1193.63
(C72H87N7O3S3+, M]+; calc. 1193.60).
Abbotto, ‘Dye-Sensitized Solar Hydrogen Production: The
Emerging Role of Metal-Free Organic Sensitizers’, Eur. J.
Org. Chem. 2016, 5194–5215.
Data of S4-2: IR: 3348, 2963, 2929, 2873, 2207, 1663,
1572, 1518, 1493, 1435, 1360, 1323, 1282, 1266, 1242,
1227, 1219, 1184, 1157, 1127, 1115, 1090, 1060, 1014,
939, 920, 875, 818, 801, 751, 734, 728, 687, 674, 665,
[5] H. B. Gray, ‘Powering the Planet with Solar Fuel’, Nat.
Chem. 2009, 1, 7.
[6] X. Ding, Y. Gao, L. Ye, L. Zhang, L. Sun, ‘Assembling
Supramolecular Dye-Sensitized Photoelectrochemical Cells
for Water Splitting’ ChemSusChem 2015, 8, 3992–3995.
[7] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E.
Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, ‘Conversion
of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicar-
boxylate)ruthenium(II) Charge-Transfer Sensitizers (X=ClÀ ,
BrÀ , IÀ , CNÀ , and SCNÀ ) on Nanocrystalline TiO2 Electrodes’,
J. Am. Chem. Soc. 1993, 115, 6382–6390.
[8] J. A. Seabold, K.-S. Choi, ‘Effect of a Cobalt-Based Oxygen
Evolution Catalyst on the Stability and the Selectivity of
Photo-Oxidation Reactions of a WO3 Photoanode’, Chem.
Mater. 2011, 23, 1105–1112.
1
621, 602, 544, 510, 498, 452, 407. H-NMR (400 MHz,
CDCl3): 8.37 (s, 3 H); 7.68 (d, J=4.0, 3 H); 7.63 (d, J=8.9,
6 H); 7.35 (d, J=4.0, 3 H); 7.18 (d, J=9.0, 6 H); 5.99 (d,
J=8.3, 3 H); 4.08–3.99 (m, 3 H); 1.56 (d, J=8.2, 6 H);
1.25 (td, J=8.0, 6.3, 9 H); 0.96 (t, J=7.4, 9 H). 13C-NMR
(100 MHz, CDCl3): 159.93; 152.48; 147.43; 144.41;
138.36; 135.03; 128.32; 127.66; 32 124.63; 123.72;
117.50; 99.33; 77.23; 65.86; 47.96; 29.60; 20.35; 15.28;
10.37.
[9] J. Kiwi, M. Graetzel, ‘Specific Analysis of Surface-Bound
Peroxides Formed during Photoinduced Water Cleavage in
Titanium Dioxide-Based Microheterogeneous Systems’, J.
Mol. Catal. 1987, 39, 63–70.
Acknowledgements
[10] E. Yesodharan, S. Yesodharan, M. Grätzel, ‘Photolysis of
Water with Supported Noble Metal Clusters, the Fate of
Oxygen in Titania Based Water Cleavage Systems’, Solar
Energy Mater. 1984, 10, 287–302.
[11] O. C. Compton, F. E. Osterloh, ‘Niobate Nanosheets as
Catalysts for Photochemical Water Splitting into Hydrogen
and Hydrogen Peroxide’, J. Phys. Chem. C 2009, 113, 479–
485.
The authors acknowledge Dr. Chidambar Kulkarni for
the help with the TiO2 substrates, Ingeborg Schreur for
SEM. Would like to thank Dr. Stefan Meskers, Prof. Dr.
René Janssen, and Prof. Dr. Ron Naaman and his group
for fruitful discussions. We acknowledge funding from
the Dutch Ministry of Education, Culture and Science
(Gravity program 024.001.035).
[12] W. Mtangi, V. Kiran, C. Fontanesi, R. Naaman, ‘Role of the
Electron Spin Polarization in Water Splitting’, J. Phys. Chem.
Lett. 2015, 6, 4916–4922.
[13] W. Mtangi, F. Tassinari, K. Vankayala, A. Vargas Jentzsch, B.
Adelizzi, A. R. A. Palmans, C. Fontanesi, E. W. Meijer, R.
Naaman, ‘Control of Electrons’ Spin Eliminates Hydrogen
Peroxide Formation during Water Splitting’, J. Am. Chem.
Soc. 2017, 139, 2794–2798.
[14] R. Naaman, D. H. Waldeck, ‘Spintronics and Chirality: Spin
Selectivity in Electron Transport Through Chiral Molecules’,
Annu. Rev. Phys. Chem. 2015, 66, 263–281.
[15] G. F. Moore, J. D. Blakemore, R. L. Milot, J. F. Hull, H. Song,
L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig,
‘A Visible Light Water-Splitting Cell with a Photoanode
Formed by Codeposition of a High-Potential Porphyrin and
an Iridium Water-Oxidation Catalyst’, Energy Environ. Sci.
2011, 4, 2389–2392.
[16] B. Adelizzi, I. A. W. Filot, A. R. A. Palmans, E. W. Meijer,
‘Unravelling the Pathway Complexity in Conformationally
Flexible N-Centered Triarylamine Trisamides’, Chem. Eur. J.
2017, 23, 6103–6110.
[17] B. E. Hardin, H. J. Snaith, M. D. McGehee, ‘The Renaissance
of Dye-Sensitized Solar Cells’, Nat. Photonics 2012, 6, 162–
169.
[18] H. Meier, Z.-S. Huang, D. Cao, ‘Double D-π-A Branched
Dyes – a New Class of Metal-Free Organic Dyes for
Efficient Dye-Sensitized Solar Cells’, J. Mater. Chem. C 2017,
5, 9828–9837.
Author Contribution
B. A. conceived the project and designed the experi-
ments. B. A., A. T. R., A. J. R., and R. S. M. performed the
experiments. B. A., A. T. R., and S. E. analyzed the data.
M. L. determined the crystal structure of S4-2. B. A.,
A. T. R., A. R. A. P., and E. W. M. wrote the manuscript.
A. R. A. P. and E. W. M. supervised the research.
References
[1] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein,
J. J. H. Pijpers, D. G. Nocera, ‘Wireless Solar Water Splitting
Using Silicon-Based Semiconductors and Earth-Abundant
Catalysts’, Science 2011, 334, 645–648.
[2] Y. Tachibana, L. Vayssieres, J. R. Durrant, ‘Artificial Photo-
synthesis for Solar Water-Splitting’, Nat. Photonics 2012, 6,
511–518.
[3] B. Gu, J. Kiwi, M. Grätzel, ‘Photochemical Water Cleavage in
Suspensions of Pt-Loaded Titania Particles with 0.7%
Overall Light to Chemical Conversion Efficiency’, in ‘Hydro-
gen Systems’, Eds. T. N. Veziroglu, Y. Zhu, D. Bao,
Pergamon Press, Oxford, 1986, pp. 121–134.
(11 of 12) e1900065
© 2019 Wiley-VHCA AG, Zurich, Switzerland