4.7 CD spectra recording
16 G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng
and T. Tuschl, Mol. Cell, 2004, 15, 185–197.
CD spectra in the range 200 to 350 nm were recorded on a CD
dichrograph (Jobin-Yvon) at 25 1C in the same buffer as in the
melting experiments at a duplex concentration of 2 mM, using
a 5 mm path length cell, 2 nm bandwidth and a 1–2 s
integration time. Each spectrum was smoothed with a
25-point algorithm (included in the manufacturer’s software,
version 2.2).
17 F. V. Rivas, N. H. Tolia, J. J. Song, J. P. Aragon, J. Liu,
G. J. Hannon and L. Joshua-Tor, Nat. Struct. Mol. Biol., 2005,
12, 340–349.
18 Y. R. Yuan, Y. Pei, J. B. Ma, V. Kuryavyi, M. Zhadina,
G. Meister, H. Y. Chen, Z. Dauter, T. Tuschl and D. J. Patel,
Mol. Cell, 2005, 19, 405–419.
19 Y. Wang, S. Juranek, H. Li, G. Sheng, G. S. Wardle, T. Tuschl and
D. J. Patel, Nature, 2009, 461, 754–761.
20 J. B. Ma, Y. R. Yuan, G. Meister, Y. Pei, T. Tuschl and D. J. Patel,
Nature, 2005, 434, 666–670.
4.8 The stability of siRNAs in 10% FBS
21 A. Lingel, B. Simon, E. Izaurralde and M. Sattler, Nat. Struct.
Mol. Biol., 2004, 11, 576–577.
The unmodified ssRNA sense strand was 50-labelled
with [g-32P] ATP by T4 polynucleotide kinase (Amersham)
(incubation of 3 nmol of RNA with 10 units of enzyme for 1 h
at 37 1C). Duplexes were formed by annealing equal molar
ratios of sense and antisense strands to form seven types of
siRNA (Fig. 2). Duplex formation was confirmed by 20%
PAGE under native conditions. Then duplexes (3 pmols per
reaction) were diluted in RPMI medium (Gibco) supple-
mented with 10% FBS (Gibco) and incubated at 37 1C.
Aliquots of 10 ml were collected after 0, 1, 5, 15, 30, 60, 120,
240, 360 min and 24 h, diluted in 1ꢂ loading buffer (Fermentas),
frozen in liquid N2 and kept at ꢁ20 1C until analysis time.
Control sample ‘‘0’’ was prepared with ice cold FBS and
RPMI medium, collected and immediately frozen. Samples
were separated on 20% PAGE under non-denaturing
conditions. Substrate and degraded products were quantified
using a G-Box (SynGene, Cambridge, UK) instrument and
GeneTools 4.0 software.
22 Y. Wang, G. Sheng, S. Juranek, T. Tuschl and D. J. Patel, Nature,
2008, 456, 209–213.
23 Y. Wang, S. Juranek, H. Li, G. Sheng, T. Tuschl and D. J. Patel,
Nature, 2008, 456, 921–926.
24 B. Nawrot and K. Sipa, Curr. Top. Med. Chem., 2006, 6, 913–925.
25 J. K. Watts, G. F. Deleavey and M. J. Damha, Drug Discovery
Today, 2008, 13, 842–855.
26 J. B. Bramsen, M. B. Laursen, A. F. Nielsen, T. B. Hansen, C. Bus,
N. Langkjær, B. R. Babu, T. Højland, M. Abramov, A. Aerschot,
D. Odadzic, R. Smicius, J. Haas, C. Andree, J. Barman,
M. Wenska, P. Srivastava, C. Zhou, D. Honcharenko, S. Hess,
E. Muller, G. V. Bobkov, S. N. Mikhailov, E. Fava, T. F. Meyer,
J. Chattopadhyaya, M. Zerial, J. W. Engels, P. Herdewijn,
J. Wengel and J. Kjems, Nucleic Acids Res., 2009, 37, 2867–2881.
27 F. Czauderna, M. Fechtner, S. Dames, H. Aygun, A. Klippel,
G. J. Pronk, K. Giese and J. Kaufmann, Nucleic Acids Res., 2003,
31, 2705–2716.
28 Y. L. Chiu and T. M. Rana, RNA, 2003, 9, 1034–1048.
29 D. A. Braasch, S. Jensen, Y. Liu, K. Kaur, K. Arar, M. A. White
and D. R. Corey, Biochemistry, 2003, 42, 7967–7975.
30 G. Dorn, S. Patel, G. Wotherspoon, M. Hemmings-Mieszczak,
J. Barclay, F. J. Natt, P. Martin, S. Bevan, A. Fox, P. Ganju,
W. Wishart and J. Hall, Nucleic Acids Res., 2004, 32, e49.
31 M. Amarzguioui, T. Holen, E. Babaie and H. Prydz, Nucleic Acids
Res., 2003, 31, 589–595.
32 X. Chen, L. Shen and J. H. Wang, Oligonucleotides, 2004, 14,
90–99.
33 J. Harborth, S. M. Elbashir, K. Vandenburgh, H. Manninga,
S. A. Scaringe, K. Weber and T. Tuschl, Antisense Nucleic Acid
Drug Dev., 2003, 13, 83–105.
34 J. M. Layzer, A. P. McCaffrey, A. K. Tanner, Z. Huang,
M. A. Kay and B. A. Sullenger, RNA, 2004, 10, 766–771.
35 C. J. Wilds and M. J. Damha, Nucleic Acids Res., 2000, 28, 3625–3635.
36 T. Dowler, D. Bergeron, A. L. Tedeschi, L. Paquet, N. Ferrari and
M. J. Damha, Nucleic Acids Res., 2006, 34, 1669–1675.
37 A. D. Seidman, Oncology, 2001, 60, 189–198.
Acknowledgements
We thank Professor Stec for scientific inspiration, and
Professor Barbara Nawrot for her assistance and scientific
support of the presented studies. This work was supported by
PBZ-MNiSW-07/I/2007 for years 2008–2010 and by the
Bioorganic Chemistry and Structural Biology Network.
References
1 Y. Dorsett and T. Tuschl, Nat. Rev. Drug Discovery, 2004, 3, 318–329.
2 C. J. Echeverri and N. Perrimon, Nat. Rev. Genet., 2006, 7, 373–384.
3 M. Lopez-Fraga, T. Martınez and A. Jimenez, Bio. Drugs, 2009,
23, 305–332.
4 G. Meister and T. Tuschl, Nature, 2004, 431, 343–349.
5 W. Filipowicz, L. Jaskiewicz, F. A. Kolb and R. S. Pillai, Curr.
Opin. Struct. Biol., 2005, 15, 331–341.
38 S. Greggi, M. G. Salerno, G. D’Agostino, G., Ferrandina,
D. Lorusso, L. Manzione, S. Mancuso and G. Scambia, Oncology,
2001, 60, 19–23.
39 T. S. Lawrence, M. A. Davis, A. Hough and A. Rehemtulla, Clin.
Cancer Res., 2001, 7, 314–319.
40 D. Konerding, T. L. James, E. Trump, A. M. Soto, L. A. Marky
and W. H. Gmeiner, Biochemistry, 2002, 41, 839–846.
41 M. Sierant, K. Kubiak, J. Kamierczak-Baranska, M. Warashina,
T. Kuwabara and B. Nawrot, Int. J. Alzh. Dis., 2009, article ID
257403.
42 M. H. Caruthers, Science, 1985, 230, 281–285.
43 K. Sipa, E. Sochacka, J. Kazmierczak-Baranska, M. Maszewska,
M. Janicka, G. Nowak and B. Nawrot, RNA, 2007, 13, 1301–1316.
44 Y. L. Chiu and T. M. Rana, Mol. Cell, 2002, 10, 549–561.
45 H. Qing, W. Zhou, M. A. Christensen, X. Sun, Y. Tong and
W. Song, FASEB J., 2004, 18, 1571–1573.
6 D. P. Bartel, Cell, 2004, 116, 281–297.
7 Y. Tomari and P. D. Zamore, Genes Dev., 2005, 19, 517–529.
8 S. M. Elbashir, W. Lendeckel and T. Tuschl, Genes Dev., 2001, 15,
188–200.
9 N. C. Lau, L. P. Lim, E. G. Weinstein and D. P. Bartel, Science,
2001, 294, 858–862.
10 S. Weitzer and J. Martinez, Nature, 2007, 447, 222–226.
11 C. Matranga, Y. Tomari, C. Shin, D. P. Bartel and P. D. Zamore,
Cell, 2005, 123, 607–620.
12 T. A. Rand, S. Petersen, F. Du and X. Wang, Cell, 2005, 123,
621–629.
13 S. M. Hammond, S. Boettcher, A. A. Caudy, R. Kobayashi and
G. J. Hannon, Science, 2001, 293, 1146–1150.
14 J. Liu, M. A. Carmell, F. V. Rivas, C. G. Marsden,
J. M. Thomson, J. J. Song, S. M. Hammond, L. Joshua-Tor and
G. J. Hannon, Science, 2004, 305, 1437–1441.
46 K. J. Breslauer, Methods Mol. Biol., 1994, 26, 347–372.
47 A. Velazquez-Campoy, I. Luque and E. Freire, Thermochim. Acta,
2001, 380, 217–227.
48 F. C. Richardson, K. K. Richardson, J. S. Kroin and L. W. Hertel,
Nucleic Acids Res., 1992, 20, 1763–1768.
49 B. Nawrot and E. Sochacka, Curr. Prot. Nucleic Acid Chem., 2009,
pp. 16.2.1–16.2.16.
15 M. A. Valencia-Sanchez, J. Liu, G. J. Hannon and R. Parker,
Genes Dev., 2006, 20, 515–524.
50 M. B. Hansen, S. E. Nielsen and K. Berg, J. Immunol. Methods,
1989, 119, 203–210.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
924 | New J. Chem., 2010, 34, 918–924