216
H.H. Monfared et al. / Applied Catalysis A: General 372 (2010) 209–216
MnIII-porphyrin in the presence of bicarbonate gives remarkably
excellent selectivity and yield for the epoxidation of cyclic and
linear olefins with H2O2. Sodium bicarbonate by stabilizing H2O2
prevents its fast decomposition and promotes its heterolytic
cleavage for selective epoxidation. The bicarbonate-activated
oxidation system is a simple, inexpensive, and relatively nontoxic
alternative to other oxidants and peroxyacids, and it can be used in
a variety of oxidations where a mild, neutral pH oxidant is
required. The components of the system are inexpensive and
environmentally friendly. The oxidation with Mn(TPP)OAc/Im/
NaHCO3/H2O2 proceeds by the mediation of Mn–oxo species.
[16] S. Banfi, F. Montanari, G. Pozzi, S. Quici, Tetrahedron 50 (1994) 9025–9036.
[17] D. Mansuy, Coord. Chem. Rev. 125 (1993) 129–141.
[18] R.A. Sheldon, Top. Curr. Chem. 164 (1993) 21–34.
[19] V.N. Kislenko, A.A. Berlin, Russ. Chem. Rev. 60 (1991) 470–488.
[20] W.C. Schumb, C.N. Satterfield, R.L. Wentworth, Hydrogen Peroxide, Reinhold,
New York, 1955.
[21] J.P. Farr, W.L. Smith, D.S. Steichen, in: J.I. Kroschwitz (Ed.), Kirk-Othmer Ency-
clopedia of Chemical Technology, vol. 4, Wiley-Interscience, New York, 1997, pp.
271–300.
[22] H. Yao, D.E. Richardson, J. Am. Chem. Soc. 122 (2000) 3220–3221.
[23] K.-P. Ho, T.H. Chan, K.-Y. Wong, Green Chem. 8 (2006) 900–905.
[24] B.S. Lane, K. Burgess, J. Am. Chem. Soc. 123 (2001) 2933–2934.
[25] S. Tangestaninejad, V. Mirkhani, M. Moghadam, G. Grivani, Catal. Commun. 8
(2007) 839–844.
[26] S.K. Maiti, S. Dinda, M. Nandi, A. Bhaumik, R. Bhattacharyya, J. Mol. Catal. A: Chem.
287 (2008) 135–141.
[27] N. Gharah, S. Chakraborty, A.K. Mukherjee, R. Bhattacharyya, Chem. Commun.
(2004) 2630–2632.
Acknowledgement
[28] S. Dinda, S.R. Chowdhury, K.M. Abdul Malik, R. Bhattacharyya, Tetrahedron Lett.
46 (2005) 339–341.
[29] B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457–2473.
[30] C. Chi-ming,W. Man-kin, US Patent 7,482,478 (2009).
[31] D.E. Richardson, H. Yao, K.M. Frank, D.A. Bennett, J. Am. Chem. Soc. 122 (2000)
1729–1739.
We are grateful to the Research Council of Zanjan University for
financial support of this study.
References
[32] C.A.S. Regino, D.E. Richardson, Inorg. Chim. Acta 360 (2007) 3971–3977.
[33] A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakof, J. Org.
Chem. 32 (1967) 476.
[34] A.D. Adler, F.R. Longo, F. Kampas, J. Kim, J. Inorg. Nucl. Chem. 32 (1970) 2443–
2445.
[35] H. Hosseini-Monfared, S. Sadighian, M.-A. Kamyabi, P. Mayer, J. Mol. Catal. A:
Chem. 304 (2009) 139–146.
[36] A. Kamyabi-Gol, S.M. Zebarjad, S.A. Sajjadi, Colloid Surface A: Physicochem. Eng.
Aspects 336 (2009) 69–74.
[37] S.T. Kim, M.S. Park, H.M. Kim, Sens. Actuator B 102 (2004) 253–260.
[38] J.T. Groves, W.J. Kruper, R.C. Haushalter, J. Am. Chem. Soc. 102 (1980) 6375–6377.
[39] D. Mohajer, H. Hosseini-Monfared, J. Chem. Res. (1998) 772–773.
[40] A.J. Appleton, S. Evans, J.R.L. Smith, J. Chem. Soc., Perkin Trans. 2 (1995) 281–284.
[41] D. Mansuy, P. Battioni, J.-P. Renaud, J. Chem. Soc., Chem. Commun. (1984) 1255–
1257.
[42] B.M. Lynch, K.H. Pausacker, J. Chem. Soc. (1955) 1525–1531.
[43] J.T. Groves, Y. Watanabe, T.J. McMurry, J. Am. Chem. Soc. 105 (1983) 4489–4490.
[44] H.C. Brown, J.H. Kawakami, S. Ikegami, J. Am. Chem. Soc. 92 (1970) 6914–6917.
[45] D. Ostovic, T.C. Bruice, Acc. Chem. Res. 25 (1992) 314–320.
[46] T. Sooknoi, J. Limtrakul, Appl. Catal. A: Gen. 233 (2002) 227–237.
[47] G.B. Shul’pin, G. S-Fink, J.R.L. Smith, Tetrahedron 55 (1999) 5345–5358.
[48] A.W. Karunditu, C.M. Carr, K. Dodd, Text. Res. J. 64 (1994) 570.
[49] Y. Du, Y. Xiong, J. Li, X. Yang, J. Mol. Catal. A: Chem. 298 (2009) 12–16.
[50] R.S. Drago, K.M. Frank, Y.-C. Yang, G.W. Wagner, The Proceedings of the 1997
ERDEC Scientific Conference on Chemical and Biological Defense Research, U.S.
Army Edgewood Research, Development, and Engineering Center, 1998.
[1] G. Franz, R.A. Sheldon, in: B. Elvers, S. Hawkins, G. Shulz (Eds.), 5th ed., UIImann’s
Encyclopedia of Industrial Chemistry, vol. A, no. 18, VCH, Weinheim, 1991, pp.
261–311.
[2] J.T. Lutz, in: K. Othmer, M. Grayson, D. Eckroth, G.J. Bushey, C.I. Eastman, A.
Klingsberg, L. Spiro (Eds.), 3rd ed., Encyclopedia of Chemical Technology, vol. 9,
Wiley, New York, 1980, p. 251.
[3] R.A. Sheldon, J.K. Kochi (Eds.), Metal-catalyzed Oxidations of Organic Compounds,
Academic, New York, 1981.
[4] P.R. Ortiz de Montellano (Ed.), Cytochrome P-450: Structure, Mechanism and
Biochemistry, Plenum, New York, 1976.
[5] H. Hosseini Monfared, M. Ghorbani, Monatsh. Chem. 132 (2001) 989–992.
[6] H. Hosseini Monfared, M. Ghadimi, J. Chem. Res. (5) (2003) 313–314.
[7] R. De Paula, M.M.Q. Simo˜es, M. Grac¸a, P.M.S. Neves, J.A.S. Cavaleiro, Catal. Com-
mun. 10 (2008) 57–60.
[8] G.B. Shul’pin, Y.N. Kozlov, S.N. Kholuiskaya, M.I. Plieva, J. Mol. Catal. A: Chem. 299
(2009) 77–87.
[9] S.T. Castaman, S. Nakagaki, R.R. Ribeiro, K.J. Ciuffi, S.M. Drechsel, J. Mol. Catal. A:
Chem. 300 (2009) 89–97.
[10] K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252 (2008) 1420–1450.
[11] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189–214.
[12] B. Meunier, Chem. Rev. 92 (1992) 1411–1456.
[13] W.A. Lee, T. Bruice, J. Am. Chem. Soc. 107 (1985) 513–514.
[14] P. Battioni, J.-P. Renaud, J.E. Bartoli, M. Reina-Artiles, M. Fort, D. Mansuy, J. Am.
Chem. Soc. 110 (1988) 8462–8470.
[15] P.L. Anelli, S. Banfi, F. Lengramandi, F. Montanari, G. Pozzi, S. Quici, J. Chem. Soc.,
Perkin Trans. 1 (1993) 1345–1357.