de Souza et al.
JOCArticle
In the field of synthetic organic chemistry, microwave
dielectric heating for the past two decades has provided a
powerful method to enhance chemical processes and to
provide, in many cases, improved yields and cleaner reaction
have been invoked to rationalize the observed effects since
control experiments with conventional heating in a similar
temperature range often led to different reaction rates or
5-12
selectivities.
In fact, a 2008 publication has presented
3
profiles in significantly shorter reaction times. More re-
evidence that microwave irradiation can induce changes in
the tertiary structure/conformation of a hyperthermophilic
enzyme not related to a macroscopic temperature change,
which resulted in high biocatalytic hydrolysis rates at bulk
solution temperatures far below the thermal optimum of the
cently, microwave heating has also been successfully applied
in the biosciences field, including areas such as peptide
synthesis, protein digestion (proteomics), or DNA amplifi-
4
cation by polymerase chain reaction (PCR). As far as
1
0,15
synthetic enzymatic transformations are concerned, a signi-
ficant number of reports over the past few years have des-
cribed microwave-assisted, mostly lipase-catalyzed esterifi-
enzyme.
On the other hand, a recently conducted careful
analysis of lipase-catalyzed transesterification reactions led
to the conclusion that, in contrast to previous literature
reports, no differences between microwave heating and
5
-12
cations, transesterifications, or hydrolysis reactions.
In most instances, the published results suggest that micro-
wave irradiation can have an influence on enzyme stability
1
6
conventional heating existed.
Prompted by the ongoing and controversial debate on the
involvement of nonthermal microwave effects in biocatalytic
5
-7
and activity,
in addition to altering/enhancing reaction
5,11,12
5
-10
5
transformations, we herewith describe a critical comparison
rates and/or enantioselectivities.
these publications so-called nonthermal microwave effects
In the majority of
1
3,14
of microwave and conventionally heated kinetic resolutions
of a racemic secondary alcohol using immobilized lipases in
nonaqueous media. The kinetic resolution of a secondary
alcohol appears to be an ideal probe for investigating non-
thermal microwave effects in enzymatic transformations,
since apart from the standard parameter “conversion” that
is typically monitored in comparing conventional heating
and microwave heating experiments, the “enantioselectivity”
(
3) (a) For a recent review with >900 references and a tabular survey of
ca. 200 microwave chemistry review articles, books, and book chapters, see:
Kappe, C. O.; Dallinger, D. Mol. Diversity 2009, 13, 71.(b) Caddick, S;
Fitzmaurice, R. Tetrahedron 2009, 65, 3325 and references cited therein.
(
4) For a review, see: Collins, J. M.; Leadbeater, N. E. Org. Biomol. Chem.
007, 5, 1141.
5) For a review, see: R ꢀe jasse, B.; Lamare, S.; Legoy, M.-D.; Besson, T. J.
Enzyme Inhib. Med. Chem. 2007, 22, 518.
6) (a) R ꢀe jasse, B.; Besson, T.; Legoy, M.-D.; Lamare, S. Org. Biomol.
2
(
17
parameter can also be studied here. The enantioselectivity
(
Chem. 2006, 4, 3703. (b) R ꢀe jasse, B.; Lamare, S.; Legoy, M.-D.; Besson, T.
Org. Biomol. Chem. 2004, 2, 1086.
for a lipase-catalyzed kinetic resolution would be expected to
be rather sensitive to temperature and therefore a good probe
to distinguish between thermal and nonthermal microwave
effects. Previous investigations of lipase-catalyzed kinetic
resolutions of secondary alcohols with microwave irradia-
tion have in several cases demonstrated significant enhance-
ments in both rate and/or enantioselectivity compared to the
(7) (a) Zhao, H.; Baker, G. A.; Song, Z.; Olubajo, O.; Zanders, L.;
Campbell, S. M. J. Mol. Catal. B: Enzym. 2009, 57, 149.(b) Yadav, G. D.;
Borkar, I. V. Ind. Eng. Chem. Res. 2009, 48, published online October 9, 2008,
DOI: 10.1021/ie800591c.
(
8) (a) Huang, W.; Xia, Y.-M.; Gao, H.; Fang, Y.-J.; Wang, Y.; Fang, Y.
J. Mol. Catal. B: Enzym. 2005, 35, 113. (b) Yadav, G. D.; Lathi, P. S. J. Mol.
Catal. A: Chem. 2004, 223, 51. (c) Roy, I.; Gupta, M. N. Tetrahedron 2003,
5
9, 5431. (d) Parker, M.-C.; Besson, T.; Lamare, S.; Legoy, M.-D. Tetra-
hedron Lett. 1996, 37, 8383.
9) (a) Kidwai, M.; Mothsra, P.; Gupta, N.; Kumar, S. S.; Gupta, R.
11
results obtained applying conventional heating. To distin-
(
guish between thermal and nonthermal microwave effects in
these reactions we herewith present a critical evaluation of
lipase-catalyzed kinetic resolutions of a secondary alcohol
using accurate and fast responding internal fiber-optic tem-
Synth. Commun. 2009, 39, 1143. (b) Major, B.; Kelemen-Horv ꢀa th, I.;
Csan ꢀa di, Z.; B ꢀe lafi-Bak oꢀ , K.; Gubicza, L. Green Chem. 2009, 11, 614. (c)
Fang, Y.; Huang, W.; Xia, Y.-M. Process Biochem. (Oxford, U.K.) 2008, 43,
306. (d) Sarma, K.; Borthakur, N.; Goswami, A. Tetrahedron Lett. 2007, 48,
6776. (e) Yadav, G. D.; Sajgure, A. D. J. Chem. Technol. Biotechnol. 2007, 82,
964. (f) Yadav, G. D.; Lathi, P. S. Clean Technol. Environ. Policy 2007, 9, 281.
14,17,18
perature probes.
(
g) Yadav, G. D.; Borkar, I. AIChE J 2006, 52, 1235. (h) Kerep, P.; Ritter, H.
Macromol. Rapid Commun. 2006, 27, 707. (i) Yadav, G. D.; Lathi, P. S.
Enzyme Microb. Technol. 2006, 38, 814. (j) Yadav, G. D.; Lathi, P. S. Synth.
Commun. 2005, 35, 1699. (k) Mazumder, S.; Laskar, D. D.; Prajapati, D.;
Roy, M. K. Chem. Biodiversity 2004, 1, 925. (l) Bradoo, S.; Rathi, P.; Saxena,
R. K.; Gupta, R. J. Biochem. Biophys. Methods 2002, 51, 115. (m) Kidwai,
M.; Dave, B.; Bhushan, K. R.; Misra, P.; Saxena, R. K.; Gupta, R.;
Gulati, R.; Singh, M. Biocatal. Biotranform. 2002, 20, 377. (n) Vacek, M.;
Zarev uꢀ cka, M.; Wimmer, Z.; Str ꢀa nsk ꢀy , K.; Demnerov ꢀa , K.; Legoy, M.-D.
Biotechnol. Lett. 2000, 22, 1565. (o) Gelo-Pujic, M.; Guib ꢀe -Jampel, E.;
Loupy, A. Tetrahedron 1997, 53, 17247.
Results and Discussion
General Considerations. As a simple and representative
model system for our planned comparison studies between
microwave and conventionally heated kinetic resolutions
using secondary alcohols and lipases we have chosen rac-
1-phenylethanol (1) as the alcohol component and vinyl
acetate (2) as the acyl donor (Scheme 1). This system has
(
10) Young, D. D.; Nichols, J.; Kelly, R. M.; Deiters, A. J. Am. Chem.
Soc. 2008, 130, 10048.
11) (a) Bachu, P.; Gibson, J. S.; Sperry, J.; Brimble, M. A. Tetrahedron:
(
(15) By applying microwave dielectric heating, it may be expected that
certain movements of the biocatalyst required for catalysis (for example, the
opening of the active site of a lipase by the so-called lid-movement) can be
stimulated by selectively inducing changes in protein conformation by
microwave irradiation. See also: (a) De Pomarai, D. I.; Smith, B.; Dawe,
A.; North, K.; Smith, T.; Archer, D. B.; Duce, I. R.; Jones, D.; Candido, E. P.
M. FEBS Lett. 2003, 543, 93. (b) Porcelli, M.; Cacciapuoti, G.; Fusco, S.;
Massa, R.; d’Ambrosio, G.; Bertoldo, C.; De Rosa, M.; Zappia, V. FEBS
Lett. 1997, 402, 102. (c) La Cara, S. M. R.; D’Auria, S.; Massa, R.;
d’Ambrosio, G.; Franceschetti, G.; Rossi, M.; De Rosa, M. Bioelectromag-
netics 1999, 20, 172.
Asymmetry 2007, 18, 1618. (b) Yu, D.; Chen, P.; Wang, L.; Gu, Q.; Li, Y.;
Wang, Z.; Cao, S. Process Biochem. (Oxford, U.K.) 2007, 42, 1312. (c) Yu, D.;
Wang, Z.; Chen, P.; Jin, L.; Cheng, Y.; Zhou, J.; Cao, S. J. Mol. Catal. B:
Enzym. 2007, 48, 51. (d) Lin, G.; Lin, W.-Y. Tetrahedron Lett. 1998, 39, 4333.
(
e) Carrillo-Munoz, J.-R.; Bouvet, D.; Guib ꢀe -Jampel, E.; Loupy, A.; Petit, A.
J. Org. Chem. 1996, 61, 7746.
12) (a) Yadav, G. D.; Sajgure, A. D.; Dhoot, S. B. J. Chem. Technol.
(
Biotechnol. 2008, 83, 1145. (b) Lundell, K.; Kurki, T.; Lindroos, M.;
Kanerva, L. T. Adv. Synth. Catal. 2005, 347, 1110. (c) Pchelka, B. K.; Loupy,
A.; Plenkiewicz, J.; Blanco, L. Tetrahedron: Asymmetry 2000, 11, 2719.
(
13) For leading reviews, see: (a) Perreux, L.; Loupy, A. Tetrahedron
(16) (a) Leadbeater, N. E.; Stencel, L. M.; Wood, E. C. Org. Biomol.
Chem. 2007, 5, 1052. (b) See also: N u€ chter, M.; M u€ ller, U.; Ondruschka, B.;
Tied, A.; Lautenschl €a ger, W. Chem. Eng. Technol. 2003, 26, 12.
(17) Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C. O. J. Org. Chem.
2007, 72, 1417.
2
2
1
3
001, 57, 9199. (b) Perreux, L.; Loupy, A. In Microwaves in Organic Synthesis,
nd ed.; Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006; Chapter 4, pp
34-218. (c) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005,
4, 164.
(
14) Herrero, M. A.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008,
(18) Bacsa, B.; Horv ꢀa ti, K.; Bosze, S.; Andreae, F.; Kappe, C. O. J. Org.
Chem. 2008, 73, 7532.
7
3, 36.
6
158 J. Org. Chem. Vol. 74, No. 16, 2009