350
R. Garro et al. / Journal of Catalysis 233 (2005) 342–350
Table 11
[2] S. Kobayashi, K. Manabe, S. Limura, Chem. Commun. (2002) 94.
[3] A. Corma, J. Catal. 216 (2003) 298.
[4] S. Kobayashi, Y. Mori, K. Manabe, Tetrahedron 57 (2001) 2537.
[5] A. Hosomi, T. Nakagawa, K. Miura, J. Am. Chem. Soc. 124 (2002)
536.
Solvent free Mukaiyama aldol-type reaction over titanium containing meso-
porous molecular sieves
a
Solvent TiO
Conversion Selectivity
(wt%) of (1)
(mol%)
Hydrolysis product
yield (mol%)
2
(mol%)
[6] M.A. Aramendia, V. Borau, C. Jiménez, J.M. Marinas, J.R. Ruiz, F.J.
Urbano, Appl. Catal. A 255 (2003) 301.
(6)
(4)
(7)
[7] L.M. Parker, N.B. Milestone, R. Newman, Ind. Eng. Chem. Res. 34
(1995) 1196.
[8] M.A. Drezdon, Inorg. Chem. 27 (1998) 4628.
[9] D. Tichit, B. Coq, CatTech 7 (2003) 206.
[10] M.J. Climent, A. Corma, S. Iborra, K. Epping, A. Velty, J. Catal. 225
(2004) 316.
Yes
No
Yes
No
Yes
No
2.3
2.3
5.0
5.0
11.6
11.6
36
100
100
100
100
100
100
0
1
1
1
2
0
0
0
10
0
11
2
0
0
1
0
1
0
78
37
82
53
77
[11] A. Corma, S. Iborra, M. Mifsud, M. Renz, M. Susarte, Adv. Synth.
Catal. 346 (2004) 257.
[12] S. Delsarte, M. Florea, P. Grange, Silicates Industriels 69 (2004) 69.
[13] M.J. Climent, A. Corma, H. García, R. Guil-López, S. Iborra, V. For-
nés, J. Catal. 197 (2001) 385.
a
◦
Reaction conditions: 0.025 g of activated Ti-MCM-41 (at 250 C, in
vacuum, overnight), 1 mmol of PhCHO, 1.5 mmol of silyl ketene acetal,
2 ml of CH Cl , at reflux temperature of the solvent during 5 h.
2
2
[14] A. Corma, H. García, Chem. Rev. 103 (2003) 4307.
[15] T. Mukaiyama, K. Manno, K. Narasaka, J. Am. Chem. Soc. 96 (1974)
7503.
[16] Y. Yamamoto, K. Maruyama, K. Matsumoto, J. Am. Chem. Soc. 105
(1983) 6963.
[17] T. Mukaiyama, Angew. Chem. Int. Ed. 16 (1997) 817.
[18] E.M. Carreira, Comprehensive Asymetric Catálisis I–III 3 (1997) 997,
chap. 29.1.
[19] M. Lemaire, D. Rechavi, Chem. Rev. 102 (2002) 3467.
[20] S. Kobayashi, Eur. J. Org. Chem. 1 (1999) 15.
[21] L. Teck-Peng, L. Xu-Ran, Tetrahedron 55 (1999) 10789.
[22] C.R. Brindaban, S. Manika, B. Sanjay, Tetrahedron Lett. 34 (1993)
1989.
the catalyst. Furthermore, the large difference in activity ob-
served when the reaction is performed in CH2Cl2 and CHCl3
is remarkable. In principle, and from the point of view of
polarity, we did not expect the large differences observed.
Nevertheless, duplication of the experiments confirms the
observation. However, to a first approximation, since the wa-
ter content in CHCl3 is larger than in CH2Cl2 and water has
a negative effect on conversion, this may influence the differ-
ence in activity observed. After the CHCl3 solvent is dried
with the use of a dehydrated A zeolite, an improvement in
conversion occurs. However, there is still a large conversion
difference with respect to CH2Cl2. We have no explanation
for this observation at this point.
[23] M.T. Reetz, D. Giebel, Angew. Chem. Int. Ed. 39 (2000) 2498.
[24] H. Matsuhashi, M. Tanaka, H. Nakamura, K. Arata, Appl. Catal. A 208
(2001) 1.
It should be pointed out that the reaction can be car-
ried out with good activity and selectivity without solvent
(Tables 10 and 11), and we see no benefit to using any of
the above solvents for the Mukaiyama-type condensation re-
action with solid catalysts, where the adsorption properties
have been controlled by direct synthesis or by postsynthesis
treatment, as in the present case.
[25] D.L. Gin, W.J. Zhou, W. Gu, Chem. Mater. 13 (2001) 1949.
[26] M. Sasidharan, R. Kumar, J. Catal. 220 (2003) 326.
[27] R. Kumar, M. Sasidharan, Catal. Lett. 38 (1996) 251.
[28] R. Kumar, P. Vincent, K.V. Srinivasan, V.N. Raju, M. Sasidharan,
Chem. Commun. (1996) 129.
[29] T. Blasco, A. Corma, M.T. Navarro, J. Pérez-Pariente, J. Catal. 156
(1995) 65.
[30] D.P. Serrano, M.A. Uguina, G. Ovejero, R. Van Grieken, M. Camacho,
Micropor. Mater. 4 (1995) 273.
[31] T. Blasco, M.A. Camblor, A. Corma, P. Esteve, J.M. Guil, A. Martinez,
J.A. Perdigón-Melón, S. Valencia, J. Phys. Chem. B 102 (1998) 75.
[32] A. Corma, J.L. Jordá, M.T. Navarro, J. Pérez-Pariente, F. Rey, J. Tsuji,
Stud. Surf. Sci. Catal. 129 (2000) 169.
[33] J.M. Thomas, G. Sankar, F. Rey, T. Maschmeyer, Nature 378 (1995)
159.
[34] M. Iwamoto, H. Ishitani, Tetrahedron Lett. 44 (2003) 299.
[35] R. Mahrwald, Chem. Rev. 99 (1999) 1095.
[36] E. Gianotti, A. Frache, S. Coluccia, J.M. Thomas, T. Maschmeyer,
L. Marchese, J. Mol. Catal. A: Chem. 204–205 (2003) 483.
[37] G. Bellusi, L. Zambelli, A. Corma, M.E. Domine, Eur. Patent Appl.
1403358 (2004), to EniTecnologie.
[38] S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zec-
china, Angew. Chem. Int. Ed. 41 (2002) 4734.
[39] R. Hoppe, A. Ortlam, J. Rathousky, G. Schulz-Ekloff, A. Zukal, Mi-
cropor. Mater. 8 (1997) 267.
[40] H. Yamamoto, M. Kaneeda, S. Nakamura, K. Ishihara, J. Am. Chem.
Soc. 118 (1996) 12854.
[41] A. Corma, M.E. Domine, J.A. Gaona, J.L. Jorda, M.T. Navarro, F. Rey,
J. Pérez-Pariente, J. Tsuji, B. McCulloch, L.T. Nemeth, Chem. Com-
mun. (1998) 2211.
4. Conclusions
We have demonstrated that well-prepared Ti-MCM-41 is
a better solid catalyst for the Mukaiyama-aldol condensation
than Ti-zeolites, because of the lower diffusional restriction
for reactants and the possibility of introducing isolated TiIV
sites on the walls. The presence of water reduces the cat-
alytic activity and produces the hydrolysis of the silyl ketene
acetal. This problem can be minimized by preactivation of
the catalyst in situ, by drying of the solvent and, particular,
if the catalyst is made more hydrophobic by silylation. A se-
ries of solvents has been studied, and the presence of solvent
does not improve the catalytic performance. Silylated Ti-
MCM-41 can be recycled without any loss in activity or
selectivity.
References
[42] S. Kobayashi, K. Manabe, Y. Mori, Angew. Chem. Int. Ed. 40 (2001)
2816.
[43] S. Kobayashi, S. Nagayama, J. Am. Chem. Soc. 120 (1998) 2985.
[1] H. Yamamoto, A. Hasegawa, K. Ishihara, Angew. Chem. Int. Ed. 40
(2001) 4077.