10.1002/adsc.202000233
Advanced Synthesis & Catalysis
C.-H. Tung, Z. Xu, Tetrahedron Lett. 2019, 60, 916; c) Q.-
Q. Zhou, Y.-Q. Zou, L.-Q. Lu, W.-J. Xiao, Angew. Chem.
Int. Ed. 2019, 58, 1586; d) Y. Chen, L.-Q. Lu, D.-G. Yu,
C.-J. Zhu, W.-J. Xiao, Sci. China Chem. 2019, 62, 24; e)
T.-Y. Shang, L.-H. Lu, Z. Cao, Y. Liu, W.-M. He, B. Yu,
Chem. Commun. 2019, 55, 5408; f) G. S. Lee, S. H. Hong,
Chem. Sci. 2018, 9, 5810; g) K. Kim, S. H. Hong, Adv.
Synth. Catal. 2017, 359, 2345; h) X. He, X.-Y. Yao, K.-H.
Chen, L.-N. He, ChemSusChem 2019, 12, 5081; i) Y. Cao,
N. Wang, X. He, H.-R. Li, L.-N. He, ACS Sustainable
Chem. Eng. 2018, 6, 15032; j) Y. Cao, X. He, N. Wang, H.-
R. Li, L.-N. He, Chin. J. Chem . 2018, 36, 644; k) M. Li, X.
Dong, N. Zhang, F. Jérôme, Y. Gu, Green Chem. 2019, 21,
4650.
to the fast decomposition of arylsulfonyl hydrazide under the
photocatalytic conditions.
[2] a) W.-C. Yang, J.-G. Feng, L. Wu, Y.-Q. Zhang, Adv. Synth.
Catal. 2019, 361, 1700; b) J. Zhu, W. C. Yang, X. D. Wang,
L. Wu, Adv. Synth. Catal. 2018, 360, 386; c) G. Zeng, Y. Li,
B. Qiao, X. Zhao, Z. Jiang, Chem. Commun. 2019, 55,
11362; d) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016,
116, 10075; e) K. Shimomaki, T. Nakajima, J. Caner, N.
Toriumi, N. Iwasawa, Org. Lett. 2019, 21, 4486; f) K.
Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am.
Chem. Soc. 2017, 139, 9467; g) E. Voutyritsa, C. G.
Kokotos, Angew. Chem. Int. Ed. 2020, 59, 1735; h) N. F.
Nikitas, D. I. Tzaras, I. Triandafillidi, C. G. Kokotos, Green
Chem. 2020, 22, 471; i) Q. Zhao, W.-J. Hao, H.-N. Shi, T.
Xu, S.-J. Tu, B. Jiang, Org. Lett. 2019, 21, 9784; j) Z.-J.
Shen, H.-N. Shi, W.-J. Hao, S.-J. Tu, B. Jiang, Chem.
Commun. 2018, 54, 11542.
Scheme 4. The proposed mechanism
In conclusion, we have developed a general and practical
photocatalytic
system
for
various
cascade
sulfonation/cyclization reaction using ethylene glycol as a
unique and green medium. With this versatile transition
metal-free procedure, sulfone-containing heterocycles
including thioflavones, oxindoles, and quinoline-2,4(1H,3H)-
diones, were successfully constructed under the irradiation of
blue light at room temperature. It is speculated that the polar
ethylene glycol might be critical for the stabilization of ionic
intermediates in the reactions. Further studies employ this
photocatalytic system for other organic transformations under
visible light are being pursued in our laboratory.
[3] a) S. He, X. Chen, F. Zeng, P. Lu, Y. Peng, L. Qu, B. Yu,
Chin.
Chem.
Lett.
2020,
31,
DOI:
10.1016/j.cclet.2019.12.031; b) X.-C. Liu, K. Sun, X.-L.
Chen, W.-F. Wang, Y. Liu, Q.-L. Li, Y.-Y. Peng, L.-B. Qu,
B. Yu, Adv. Synth. Catal. 2019, 361, 3712; c) R. Li, X.
Chen, S. Wei, K. Sun, L. Fan, Y. Liu, L. Qu, Y. Zhao, B.
Yu, Adv. Synth. Catal. 2018, 360, 4807; d) M. Jakubec, I.
Ghosh, J. Storch, B. König, Chem. Eur. J. 2020, 26, 543; e)
Q.-Q. Zhou, S. J. S. Düsel, L.-Q. Lu, B. König, W.-J. Xiao,
Chem. Commun. 2019, 55, 107; f) R. Narobe, S. J. S. Düsel,
J. Iskra, B. König, Adv. Synth. Catal. 2019, 361, 3998.
[4] D. Chen, J. Liu, X. Zhang, H. Jiang, J. Li, Chin. J. Org.
Chem. 2020, 39, 3353.
[5] a) K.-J. Liu, J.-H. Deng, J. Yang, S.-F. Gong, Y.-W. Lin, J.-
Y. He, Z. Cao, W.-M. He, Green Chem. 2020, 22, 433; b)
Y. Li, S. A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J. Li, X.
Jiang, Angew. Chem. Int. Ed. 2019, 58, 13499; c) P. Bao, L.
Wang, Q. Liu, D. Yang, H. Wang, X. Zhao, H. Yue, W.
Wei, Tetrahedron Lett. 2019, 60, 214; d) L. Wang, M.
Zhang, Y. Zhang, Q. Liu, X. Zhao, J.-S. Li, Z. Luo, W. Wei,
Chin. Chem. Lett. 2020, 31, 67; e) G. Li, Q. Yan, Z. Gan, Q.
Li, X. Dou, D. Yang, Org. Lett. 2019, 21, 7938; f) D.-Q.
Dong, L.-X. Li, G.-H. Li, Q. Deng, Z.-L. Wang, S. Long,
Chin. J. Catal. 2019, 40, 1494; g) K. Xu, L. Li, W. Yan, Y.
Wu, Z. Wang, S. Zhang, Green Chem. 2017, 19, 4494; h) Z.
Wang, W.-M. He, Chin. J. Org. Chem. 2019, 39, 3594; i) M.
J. Cabrera-Afonso, Z.-P. Lu, C. B. Kelly, S. B. Lang, R.
Dykstra, O. Gutierrez, G. A. Molander, Chem. Sci. 2018, 9,
3186; j) Q. Chen, Y. Huang, X. Wang, J. Wu, G. Yu, Org.
Biomol. Chem. 2018, 16, 1713.
Experimental Section
General procedures for the synthesis of 2-sulfonylated
thioflavones: In a 25 mL reaction vial with a stirring bar,
methylthiolated alkynone
1
(0.2 mmol), arylsulfonyl
hydrazide 2 (2 equiv), K2S2O8 (2 equiv), and Acr+–Mes·ClO4
(3 mol%) were added. The vial is then evacuated and
backfilled three times with N2, followed by adding ethylene
glycol (2 mL). The mixture was stirred at blue LEDs for 12 h
under nitrogen atmosphere. After the reaction was completed,
the solvent was quenched with water (15 mL), and then the
ethyl acetate (15 mL) was added three times for extraction.
The combined organic layers were dried over anhydrous
Na2SO4. The residue was purified by column chromatography
(silica gel, petroleum ether/ethyl acetate = 6/1) to afford the
desired product 3.
-
Acknowledgements
We acknowledge the financial support from National Natural
Science Foundation of China (21971224), Natural Science
Foundation of Henan Province (162300410182), Key Research
Projects of Universities in Henan Province (20A150006,
20B350001), and Postgraduate Education Reform Project of
Henan Province (2019SJGLX008Y, 2019SJGLX034Y).
[6] a) J. Yan, J. Xu, Y. Zhou, J. Chen, Q. Song, Org. Chem.
Front. 2018, 5, 1483; b) J. Xu, X. Yu, J. Yan, Q. Song, Org.
Lett. 2017, 19, 6292; c) X. Li, X. Xu, P. Hu, X. Xiao, C.
Zhou, J. Org. Chem. 2013, 78, 7343; d) M.-H. Huang, W.-J.
Hao, B. Jiang, Chem. Asian J. 2018, 13, 2958; e) M.-H.
Huang, W.-J. Hao, G. Li, S.-J. Tu, B. Jiang, Chem.
Commun. 2018, 54, 10791; f) Q.-Q. Han, G.-H. Li, Y.-Y.
Sun, D.-M. Chen, Z.-L. Wang, X.-Y. Yu, X.-M. Xu,
Tetrahedron Lett. 2020, 61, 10.1016/j.tetlet.2020.151704;
g) M.-H. Huang, H.-N. Shi, C.-F. Zhu, C.-L. He, W.-J. Hao,
References
[1] a) Y. Peng, C.-T. Feng, Y.-Q. Li, F.-X. Chen, K. Xu, Org.
Biomol. Chem. 2019, 17, 6570; b) T. Song, H. Li, F. Wei,
4
This article is protected by copyright. All rights reserved.