Full Papers
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Figure 5. (a) Reuse of the Au6Ag1/PAAS catalyst for the condensation of benzylamine and benzyl alcohol, (b) TEM image of Au6Ag1/PAAS catalyst after 5 times
recycling. Reaction conditions were identical to those indicated in Table 3 (12 h reaction time in each cycle).
[9] W. He, L. D. Wang, C. L. Sun, K. K. Wu, S. B. He, J. P. Chen, P. Wu, Z. K. Yu,
Chem-Eur J 2011, 17, 13308–13317.
25 Acknowledgements
26
27
28
[10] J. W. Kim, J. He, K. Yamaguchi, N. Mizuno, Chem Lett 2009, 38, 920–921.
[11] a) H. Sun, F. Z. Su, J. Ni, Y. Cao, H. Y. He, K. N. Fan, Angew Chem Int Edit
2009, 48, 4390–4393; b) P. Liu, C. Li, E. J. M. Hensen, Chem-Eur J 2012,
18, 12122–12129; c) S. Kegnaes, J. Mielby, U. V. Mentzel, C. H. Christen-
sen, A. Riisager, Green Chem 2010, 12, 1437–1441; d) W. J. Cui, H. Y. Zhu,
M. L. Jia, W. L. Ao, Y. L. Zhang, B. Zhaorigetu, React Kinet Mech Cat 2013,
109, 551–562.
The authors gratefully acknowledge supports from the National
Natural Science Foundation of China (No. 51573209).
29
30 Conflict of Interest
31
32
33
[12] Q. Q. Wang, Y. Q. Deng, F. Shi, Catal Sci Technol 2014, 4, 1710–1715.
[13] a) A. Shah, Latif-ur-Rahman, R. Qureshi, Zia-ur-Rehman, Rev Adv Mater
Sci 2012, 30, 133–149; b) B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho,
J. Tao, X. M. Lu, Y. M. Zhu, Y. N. Xia, Science 2009, 324, 1302–1305; c) F.
Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y.
Chung, B. S. Mun, M. Salmeron, G. A. Somorjai, Science 2008, 322, 932–
934.
The authors declare no conflict of interest.
Keywords: alloy · imines · nanoparticles · poly(amic acid) salt ·
quasi-homogenous
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[14] a) S. E. Hunyadi, C. J. Murphy, J Mater Chem 2006, 16, 3929–3935; b) H. J.
Zhang, M. Haba, M. Okumura, T. Akita, S. Hashimoto, N. Toshima,
Langmuir 2013, 29, 10330–10339; c) J. C. S. Costa, P. Corio, L. M. Rossi,
Nanoscale 2015, 7, 8536–8543; d) G. Nagy, T. Benko, L. Borko, T. Csay, A.
Horvath, K. Frey, A. Beck, React Kinet Mech Cat 2015, 115, 45–65; e) I.
Sobczak, E. Dembowiak, J Mol Catal A-Chem 2015, 409, 137–148; f) A. Q.
Wang, C. M. Chang, C. Y. Mou, J Phys Chem B 2005, 109, 18860–18867;
g) J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, C. Y. Mou, J Phys Chem B 2005,
109, 40–43.
[15] X. M. Huang, X. G. Wang, M. W. Tan, X. J. Zou, W. Z. Ding, X. G. Lu, Appl
Catal a-Gen 2013, 467, 407–413.
[16] J. Li, G. N. Tang, Y. C. Wang, Y. Wang, Z. X. Li, H. F. Li, New J Chem 2016,
40, 358–364.
[17] a) W. J. Kim, S. Kim, A. R. Kim, D. J. Yoo, Ind Eng Chem Res 2013, 52,
7282–7288; b) D. P. Tang, R. Yuan, Y. Q. Chai, Biotechnol Bioeng 2006, 94,
996–1004; c) K. K. Haldar, S. Kundu, A. Patra, Acs Appl Mater Inter 2014, 6,
21946–21953; d) M.-X. Zhang, R. Cui, J.-Y. Zhao, Z.-L. Zhang, D.-W. Pang,
J Mater Chem 2011, 21, 17080–17082.
[18] X. L. Ren, X. M. Meng, F. Q. Tang, Sensor Actuat B-Chem 2005, 110, 358–
363.
[19] X. Cao, A. Mirjalili, J. Wheeler, W. Xie, B. W. L. Jang, Front Chem Sci Eng
2015, 9, 442–449.
[1] a) R. D. Patil, S. Adimurthy, Asian J Org Chem 2013, 2, 726–744; b) K. N.
Tayade, M. Mishra, J Mol Catal A-Chem 2014, 382, 114–125.
[2] a) R. S. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett 1997, 38, 2039–
2042; b) G. C. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, J. A. Ellman, J Org
Chem 1999, 64, 1278–1284; c) H. Naeimi, F. Salimi, K. Rabiei, J Mol Catal
A-Chem 2006, 260, 100–104.
[3] L. L. Zhang, W. T. Wang, A. Q. Wang, Y. T. Cui, X. F. Yang, Y. Q. Huang,
X. Y. Liu, W. G. Liu, J. Y. Son, H. S. Oji, T. Zhang, Green Chem 2013, 15,
2680–2684.
[4] B. Chen, L. Y. Wang, S. Gao, ACS Catal 2015, 5, 5851–5876.
[5] a) R. R. Donthiri, R. D. Patil, S. Adimurthy, Eur J Org Chem 2012, 24, 4457–
4460; b) Y. Shiraishi, M. Ikeda, D. Tsukamoto, S. Tanaka, T. Hirai, Chem
Commun 2011, 47, 4811–4813; c) M. Bala, P. K. Verma, N. Kumar, U.
Sharma, B. Singh, Can J Chem 2013, 91, 732–737.
[6] J. F. Soule, H. Miyamura, S. Kobayashi, Chem Commun 2013, 49, 355–
357.
[7] a) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew Chem Int Edit 2010,
49, 1468–1471; b) L. Jiang, L. L. Jin, H. W. Tian, X. Q. Yuan, X. C. Yu, Q. Xu,
Chem Commun 2011, 47, 10833–10835; c) H. X. Li, X. T. Wang, M. W.
Wen, Z. X. Wang, Eur J Inorg Chem 2012, 5011–5020; d) A. Maggi, R.
Madsen, Organometallics 2012, 31, 451–455; e) E. L. Zhang, H. W. Tian,
S. D. Xu, X. C. Yu, Q. Xu, Org Lett 2013, 15, 2704–2707; f) M. Y. Guan, C.
Wang, J. Y. Zhang, Y. S. Zhao, RSC Adv. 2014, 4, 48777–48782.
[8] M. S. Kwon, S. Kim, S. Park, W. Bosco, R. K. Chidrala, J. Park, J Org Chem
2009, 74, 2877–2879.
[20] a) J. C. Hernández-Garrido, M. S. Moreno, C. Ducati, L. A. Pérez, P. A.
Midgley, E. A. Coronado, Nanoscale 2014, 6, 12696–12702; b) C.
Bhattacharya, B. R. Jagirdar, J Phys Chem C 2018, 122, 10559–10574.
ChemistrySelect 2019, 4, 10401–10407
10406
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim