Soc. Rev., 2007, 36, 770–818; J. L. C. Rowsell and O. M. Yaghi,
Angew. Chem., Int. Ed., 2005, 44, 4670–4679.
Table 1 A summary of the hydrocarbon adsorption properties of 1
Weight
adsorbed/mg gꢁ1
Volume
adsorbed/cm3 gꢁ1
2 M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke,
M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319–330;
N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe and
O. M. Yaghi, Acc. Chem. Res., 2005, 38, 176–182; J. L.
C. Rowsell and O. M. Yaghi, Microporous Mesoporous Mater.,
2004, 73, 3–14; O. M. Yaghi, M. O’Keeffe, N. W. Ockwig,
H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714.
3 B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe
and O. M. Yaghi, J. Am. Chem. Soc., 2000, 122, 11559–11560;
M. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter,
M. O’Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 4900–4904; J. Kim, B. Chen, T. M. Reineke, H. Li,
M. Eddaoudi, D. B. Moler, M. O’Keeffe and O. M. Yaghi, J. Am.
Chem. Soc., 2001, 123, 8239–8247.
Adsorbate
Qst/kJ molꢁ1
n-Hexane
c-Hexane
Benzene
p-Xylene
Methanol
Ethanol
268
254
268
319
260
300
296
0.41
0.33
0.31
0.37
0.33
0.38
0.37
54–73
52–73
44–58
64–88
52–52
49–57
64–64
Propanol
increasingly stronger affinity towards hydrocarbons with de-
creasing polarity. As a consequence, 1 can take up significant
amounts of selected aromatic and aliphatic hydrocarbons,
B50% higher than those observed for the large-pore zeolite
Y. Unique features in the adsorption isotherms of c-hexane
were observed, which indicate a transition from monolayer
adsorption to pore filling. This is the first time, to the best of
our knowledge, that such phenomenon is observed in metal-
organic frameworks. It appears that this kind of behavior is
closely related to the pore size, shape and nature (aliphatic or
aromatic). In depth study and understanding of similarly
unique hydrocarbon adsorption behavior in a few MMOFs
are currently under way and will be reported in the near future.
The authors are grateful to the Department of Energy
(DOE) for the financial support through Grant No. DE-
FG02-08ER46491. J. L. would like to thank Rutgers Univer-
sity for an Academic Excellence Fund (AEF) award for the
purchase of a high pressure gas analyzer.
4 K. Kumar, S. S. Wang and C. N. Sukenik, J. Org. Chem., 1984, 49,
665–670; J. D. Roberts, W. T. Moreland, Jr and W. Frazer, J. Am.
Chem. Soc., 1953, 75, 637–640; J. Von Gersdorff, B. Kirste,
D. Niethammer, W. Harrer and H. Kurreck, Magn. Reson. Chem.,
1988, 26, 416–424.
5 A. A. Fokin, O. Lauenstein, P. A. Gunchenko and P. R. Schreiner,
J. Am. Chem. Soc., 2001, 123, 1842–1847.
6 S. Landa and Z. Kamycek, Collect. Czech. Chem. Commun., 1959,
24, 4004–4009; G. S. Lee, J. N. Bashara, G. Sabih, A. Oganesyan,
G. Godjoian, H. M. Duong, E. R. Marinez and C. G. Gutierrez,
Org. Lett., 2004, 6, 1705–1707; G. R. Newkome, A. Nayak,
R. K. Behera, C. N. Moorefield and G. R. Baker, J. Org. Chem.,
1992, 57, 358–362; H. Stetter, O. E. Bander and W. Neumann,
Chem. Ber., 1956, 89, 1922–1926.
7 Solvothermal reactions of Ni(NO3)2ꢀ6H2O (99.9%, 0.185 g, 0.64
mmol) with H2bodc (0.114 g, 0.58 mmol) and ted (97%, 0.163 g,
1.41 mmol) in N,N-dimethylformamide (DMF, 20 mL/ 0.1 mL
conc. HNO3 added) at 100 1C for 4 days afforded a light-green
crystalline powder of Ni-bodc-ted. The product was vacuum
filtered, and rinsed with DMF (10 mL) and diethyl ether (10 mL)
(0.177 g, 98% yield based on H2bodc). Elemental analysis (QTI,
NJ): Calcd. for [Ni2(bodc)2(ted)] or C26H36ON2Ni2O8: C, 50.23%;
H, 5.83%; N, 4.50%; Found: C, 49.95%; H, 5.90%; N, 4.35%.
8 H. Chun, D. N. Dybtsev, H. Kim and K. Kim, Chem. Eur. J., 2005,
11, 3521–3529; D. N. Dybtsev, H. Chun and K. Kim, Angew.
Chem., Int. Ed., 2004, 43, 5033–5036.
platon.
10 J. Y. Lee, D. H. Olson, L. Pan, T. J. Emge and J. Li, Adv. Funct.
Mater., 2007, 17, 1255–1262.
11 J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J. Emge and J. Li, Adv.
Mater., 2005, 17, 2703–2706; L. Pan, B. Parker, X. Huang,
D. H. Olson, J. Lee and J. Li, J. Am. Chem. Soc., 2006, 128,
4180–4181.
Notes and references
z Crystal data for 2: Co2C36.5H60.5N5.5O11.5, Mr = 878.26, tetragonal,
space group P42212 (no. 94): a = 15.2597(6), c = 19.092(1) A,
V = 4445.7(4) A3, Z = 4, Dc = 1.312 g cmꢁ3, m(Mo-Ka) = 0.806.
All measurements were made on a SMART CCD area detector at
296(2) K with graphite-monochromated Mo-Ka radiation. A total of
47 325 reflections were collected (5522 unique, R(int) = 0.0368)
between a y of 1.711 to 28.281 (99.5% completeness). R1 = 0.053
(I 4 2s(I)), wR2 = 0.185 (all data) and GOF = 1.002 (all data).
Largest diff. peak and hole 1.050 and ꢁ1.202 e Aꢁ3 (see ESIw for
details on the handling of psudosymmetry).
1 C. J. Kepert, Chem. Commun., 2006, 695–700; S. Kitagawa,
R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334–2375; D. Maspoch, D. Ruiz-Molina and J. Veciana, Chem.
12 S. Sircar, Ind. Eng. Chem. Res., 2002, 41, 1389–1392.
ꢂc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 6123–6125 | 6125