Synthesis of amides and alkylquinolines
Russ. Chem. Bull., Int. Ed., Vol. 68, No. 1, January, 2019
73
amides and alkylquinolines from primary alcohols was carried
out in a Photo Catalytic Reactor Lelesil Innovative Systems
photocatalytic system with a 250-mL quartz reactor (photoreac-
tor of Stromeyer´s type with magnetic stir bar). The photoreac-
tor flask was loaded with a photocatalyst paste (5.0 g correspond-
ing to 1 mol.% with respect to alcohol), alcohol (BnOH or EtOH,
References
. S. Rostamnia, E. Doustkhah, RSC Adv., 2014, 4, 28238.
1
2
. K. Hii, K. Hellgardt, Organometal. Flow Chem. Topics in
Organometal. Chem., 2015, 57, 249.
. B. Karimi, A. Zamani, Org. Biomol. Chem., 2012, 10, 4531.
. A. R. Makhmutov, A. G. Mustafin, S. M. Usmanov, Chem.
Heterocycl. Compd., 2018, 54, 369.
3
4
1.0 mol), the corresponding arylamine (0.05 mol), and a solvent
(
1.5 mol). The loaded reactor was attached to the system (ac-
cording to the producer´s instruction) equipped with a reverse
condenser and a bubbler for passing atmospheric air through the
reaction medium. A medium-pressure Hg lamp (power 250 W)
served as a radiation source. The spectral composition of the
radiation by energy was as follows: UV range 48%, visible range 43%,
and IR range 9%. The spectral range was 222—1368 nm. The lum-
inous flux reached the reaction system after passing through an aque-
ous layer maintained at 25 C. The irradiation time was 6—24 h.
After the reaction completion, a precipitate of the photocatalyst
was separated and fractionation in vacuo was conducted.
5
. S. Rostamnia, E. Doustkhah, H. Golchin-Hosseini,
B. Zeynizadeh, H. Xin, R. Luque, Catal. Sci. Technol., 2016,
6
, 4124.
6
. A. R. Makhmutov, A. G. Mustafin, S. M. Usmanov, Int. J.
Environmental Sci. Educ., 2016, 11, 11831.
7
. S. L. Zultanski, J. Zhao, S. S. Stahl, J. Am. Chem. Soc., 2016,
1
38, 6416.
8
9
. S. Rostamnia, E. Doustkhah, Synlett, 2015, 26, 1345.
. A. R. Makhmutov, J. Siber. Federal University. Chem., 2017,
1
0, 154.
The physicochemical parameters and spectroscopic charac-
teristics of the tandem reaction products 2a,e,f (see Ref. 5) and
1
0. J.-F. Soulé, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc.,
011, 133, 18550.
1. J.-F. Soulé, H. Miyamura, S. Kobayashi, Asian J. Org. Chem.,
012, 1, 286.
2. J.-F. Soulé, H. Miyamura, S. Kobayashi, Chem. Asian J.,
013, 8, 2614.
3. H. Miyamura, H. Min, J. F. Soule, S. Kobayashi, Angew.
Chem., Int. Ed., 2015, 54, 7564.
4. C. Gunanathan, Y. Ben-David, D. Milstein, Science, 2007,
17, 790.
5. A. R. Makhmutov, Russ. J. Org. Chem., 2018, 54, 659.
6. C. Gunanathan, D. Milstein, Science, 2013, 341, 249.
2
3
a—d (see Ref. 28) are consistent with the literature data.
N-(2´-Methylphenyl)benzamide (2b). M.p. 145—146 С.
1
2
1
Н NMR (DMSO-d ), : 2.32 (s, 3 Н, С(2)Me); 7.09—7.80
6
1
13
(
m, 9 H, 2 Ph); 7.85 (br.s, 1 H, NH). С NMR (DMSO-d ), :
6
2
1
9.37 (Me), 125.53 (С(6´)), 125.81 (С(5´)), 126.76 (С(4´)), 127.27
1
(
1
С(2), C(6)), 128.09 (С(3), C(5)), 130.04 (С(3´)), 133.65 (С(2´)),
31.24 (С(4)), 134.56 (С(1)), 136.82 (С(1´)), 165.23 (С=O). MS
1
(
(
EI, 70 eV), m/z (Irel (%)): 212 (6), 211 [M]+ (42), 106 (12), 105
100), 77 (37).
3
1
N-(4´- Methylphenyl)benzamide (2c). M.p. 158—159 С.
1
1
Н NMR (DMSO-d ), : 2.35 (s, 3 Н, С(2)Me); 7.08—7.90
6
1
7. M. M. Gibert, in Photocatalytic Oxidation of Ethanol Using
13
(
m, 9 H, 2 Ph); 8.04 (br.s, 1 H, NH). С NMR (DMSO-d ), :
6
Macroporous Titania, Louisiana State University, Baton
2
0.77 (Me), 122.51 (С(2´), C(6´)), 128.57 (С(2), C(6)), 129.62
Rouge, 2008, p. 135.
(
(
(
С(3), C(5)), 130.38 (С(3´), C(5´)), 132.42 (С(4)), 135.16
С(4´)), 136.18 (С(1)), 137.26 (С(1´)), 165.11 (С=O). MS
EI, 70 eV), m/z (Irel (%)): 211 [M]+ (41), 106 (10), 105 (100),
1
8. A. R. Makhmutov, S. M. Usmanov, Bashkir. Khim. Zh.
[
Bashkir Chem. J.], 2018, 1, 18 (in Russian).
1
9. N. Yoshida, A. A. Tsaturyan, T. Akitsu, Y. Tsunoda, I. N.
7
7 (45), 51 (9).
Shcherbakov, Russ. Chem. Bull., 2017, 66, 2057.
0. Y.-S. Jung, K.-H. Kim, T.-Y. Jang, Y. Tak, S.-H. Baeck, Curr.
Appl. Phys., 2011, 11, 358.
N-(4´-Chlorophenyl)benzamide (2d). M.p. 154—156 С.
2
1
Н NMR (DMSO-d ), : 7.26—7.90 (m, 9 H, 2 Ph); 8.15 (br.s,
6
1
H, NH). 13С NMR (DMSO-d ), : 121.82 (С(2´), C(6´)),
6
2
1. W. Y. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem,
1
27.75 (С(2), C(6)), 128.16 (С(4´)), 128.91 (С(3), C(5)), 129.07
1994, 51, 13669.
(
С(3´), C(5´)), 131.19 (С(4)), 135.15 (С(1)), 138.41 (С(1´)),
2
2
2
2. M. I. Litter, Appl. Catal., B: Environmental, 1999, 23, 89.
3. A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal., 2002, 207, 151.
4. A. R. Makhmutov, S. M. Usmanov, Bashkir. Khim. Zh.
+
1
65.86 (С=O). MS (EI, 70 eV), m/z (Irel (%)): 231 [M] (20),
1
06 (8), 105 (100), 77 (58), 51 (22).
-Bromo-2-methylquinoline (3e). M.p. 102—104 С. Н NMR
CDCl ), : 2.76 (s, 3 Н, С(2)Me); 7.49, 7.64 (both d, 1 Н each,
1
6
[
Bashkir Chem. J.], 2018, 2, 70 (in Russian).
(
3
2
2
5. H. Zhang, W. Zhang, M. Zhao, P. Yang, Z. Zhu, Chem.
Commun., 2017, 53, 1518.
H(3), H(7), J = 7.6 Hz); 7.76 (s, 1 Н, Н(5)); 7.94 (d, 1 Н, H(4),
13
J = 7.6 Hz); 8.10 (d, 1 Н, H(8), J = 8.4 Hz). С NMR, : 28.57
Me), 129.18 (С(3)), 134.49 (С(4а)), 136.39 (С(5)), 139.81 (С(8)),
40.26 (С(7)), 140.72 (С(4)), 149.48 (С(6)), 155.36 (С(8а)),
58.65 (С(2)). MS (EI, 70 eV), m/z (I (%)): 223 (100), 222
6. A. Weissberger, E. S. Proskauer, J. A. Riddick, E. E. Toops,
Technics of Organic Chemistry, Vol. 7. Organic Solvents:
Physical Properties and Methods of Purification, Wiley, New
York, 1955.
(
1
1
rel
+
[
M] (17), 221 (97), 142 (40), 115 (52).
-Hydroxy-2-methylquinoline (3f). M.p. 214—218 С.
Н NMR (CDCl ), : 2.52 (s, 3 Н, С(2)Me); 7.03 (d, 1 Н, H(5),
2
7. Yu. V. Karyakin, I. I. Angelov, in Chistye khimicheskie
veshchestva [Pure Chemical Substances], Khimiya, Moscow,
6
1
3
1974, p. 285 (in Russian).
J = 2.6 Hz); 7.18, 7.72 (both d, 1 Н each, H(7), H(8), J = 8.3 Hz);
2
8. A. R. Makhmutov, Russ. J. Gen. Chem., 2018, 88, 892.
7
.21, 7.96 (both d, 1 Н each, H(3), H(4), J = 8.1 Hz); 9.83
13
(
s, 1 Н, OH). С NMR, : 24.80 (Me), 108.54 (С(5)),
21.36 (С(7)), 122.83 (С(3)), 127.08 (С(4a)), 129.97 (С(8)),
34.49 (С(4)), 142.54 (С(8a)), 155.69 (С(6)), 156.19 (С(2)). MS
EI, 70 eV), m/z (Irel (%)): 160 (11), 159 [M]+ (100), 131 (32),
30 (79), 103 (9).
1
1
Received July 16, 2018;
in revised form October 4, 2018;
accepted November 15, 2018
(
1