G Model
MASPEC154281–8
ARTICLE IN PRESS
M. Lesslie et al. / International Journal of Mass Spectrometry xxx (2015) xxx–xxx
8
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
[34] M. Lucarini, P. Pedrielli, G.F. Pedulli, S. Cabiddu, C. Fattuoni, Bond dissociation
energies of OH bonds in substituted phenols from equilibration studies, J. Org.
Chem. 61 (1996) 9259–9263.
[35] D. Wayner, E. Lusztyk, K. Ingold, P. Mulder, Application of photoacoustic
calorimetry to the measurement of the OH bond strength in vitamin E (␣-
and ␦-tocopherol) and related phenolic antioxidants, J. Org. Chem. 61 (1996)
6430–6433.
[36] K.M. Stirk, L.M. Kiminkinen, H.I. Kenttamaa, Ion-molecule reactions of distonic
radical cations, Chem. Rev. 92 (1992) 1649–1665.
[37] S. Osburn, T. Burgie, G. Berden, J. Oomens, R.A.J. O’Hair, V. Ryzhov, Struc-
ture and reactivity of homocysteine radical cation in the gas phase studied
by ion–molecule reactions and infrared multiple photon dissociation, J. Phys.
Chem. A 117 (2012) 1144–1150.
[38] E. Bagheri-Majdi, Y. Ke, G. Orlova, I.K. Chu, A.C. Hopkinson, K.M.W. Siu, Copper-
mediated peptide radical ions in the gas phase, J. Phys. Chem. B 108 (2004)
11170–11181.
[39] I.K. Chu, C.F. Rodriquez, T.-C. Lau, A.C. Hopkinson, K.M.W. Siu, Molecular radical
cations of oligopeptides, J. Phys. Chem. B 104 (2000) 3393–3397.
[40] I.K. Chu, C.F. Rodriguez, A.C. Hopkinson, K.M.W. Siu, T.-C. Lau, Formation of
molecular radical cations of enkephalin derivatives via collision-induced dis-
sociation of electrospray-generated copper (II) complex ions of amines and
peptides, J. Am. Soc. Mass Spectrom. 12 (2001) 1114–1119.
[41] C.K. Barlow, W.D. McFadyen, R.A.J. O’Hair, Formation of cationic peptide radicals
by gas-phase redox reactions with trivalent chromium, manganese, iron, and
cobalt complexes, J. Am. Chem. Soc. 127 (2005) 6109–6115.
[42] C.K. Barlow, D. Moran, L. Radom, W.D. McFadyen, R.A.J. O’Hair, Metal-mediated
formation of gas-phase amino acid radical cations, J. Phys. Chem. A 110 (2006)
8304–8315.
[43] S. Osburn, R.A.J. O’Hair, V. Ryzhov, Gas-phase reactivity of sulfur-based radi-
cal ions of cysteine derivatives and small peptides, Int. J. Mass Spectrom. 316
(2012) 133–139.
[44] Q. Sun, S. Yin, J.A. Loo, R.R. Julian, Radical directed dissociation for facile
identification of iodotyrosine residues using electrospray ionization mass spec-
trometry, Anal. Chem. 82 (2010) 3826–3833.
[45] T. Ly, R.R. Julian, Residue-specific radical-directed dissociation of whole pro-
teins in the gas phase, J. Am. Chem. Soc. 130 (2008) 351–358.
[46] T. Ly, R.R. Julian, Tracking radical migration in large hydrogen deficient peptides
with covalent labels: facile movement does not equal indiscriminate fragmen-
tation, J. Am. Soc. Mass Spectrom. 20 (2009) 1148–1158.
[47] C.-K. Siu, Y. Ke, Y. Guo, A.C. Hopkinson, K.M.W. Siu, Dissociations of copper (II)-
containing complexes of aromatic amino acids: radical cations of tryptophan,
tyrosine, and phenylalanine, Phys. Chem. Chem. Phys. 10 (2008) 5908–5918.
[48] I.K. Chu, J. Zhao, M. Xu, S.O. Siu, A.C. Hopkinson, K.M.W. Siu, Are the radical
centers in peptide radical cations mobile? The generation, tautomerism, and
dissociation of isomeric ␣-carbon-centered triglycine radical cations in the gas
phase, J. Am. Chem. Soc. 130 (2008) 7862–7872.
[53] N.A. Shakil, P. Usharani, J. Kumar, M.K. Singh, A. Pandey, A. Kundu, V. Ahluwalia,
Bioefficacy evaluation of novel N-alkyl-2-hydroxyketimines (Schiff bases),
Indian J. Agric. Sci. 79 (2009) 699.
[54] S.H. Chan, C.H. Chui, S.W. Chan, S.H.L. Kok, D. Chan, M.Y.T. Tsoi, P.H.M.
Leung, A.K.Y. Lam, A.S.C. Chan, K.H. Lam, Synthesis of 8-hydroxyquinoline
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
derivatives as novel antitumor agents, ACS Med. Chem. Lett.
4 (2012)
170–174.
ꢀ
[55] C. Kallweit, G. Haberhauer, S. Woitschetzki, 4,4 -bipyridine as a unidirec-
tional switching unit for a molecular pushing motor, Chem. Eur. J. 20 (2014)
6358–6365.
[56] Y. Pyatkivskyy, V. Ryzhov, Coupling of ion-molecule reactions with liquid chro-
matography on a quadrupole ion trap mass spectrometer, Rapid Commun. Mass
Spectrom. 22 (2008) 1288–1294.
[57] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F.
Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,
G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B.
Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, revision D.01, Gaussian
Inc., Wallingford, CT, 2013.
[58] T.A. Keith, AIMAll, Version 15.05.18, TK Gristmill Software, Overland Park, KS,
USA, 2015.
[59] R.F. Bader, Atoms in molecules, Acc. Chem. Res. 18 (1985) 9–15.
[60] R.F. Bader, Atoms in Molecules, Wiley Online Library, 1990.
[61] R.F. Bader, A quantum theory of molecular structure and its applications, Chem.
Rev. 91 (1991) 893–928.
[62] R. Hermann, S. Naumov, G. Mahalaxmi, O. Brede, Stability of phenol and thio-
phenol radical cations – interpretation by comparative quantum chemical
approaches, Chem. Phys. Lett. 324 (2000) 265–272.
[63] R. Joshi, S. Naumov, S. Kapoor, T. Mukherjee, R. Hermann, O. Brede, Phenol rad-
ical cations and phenoxyl radicals in electron transfer from the natural phenols
sesamol, curcumin and trolox to the parent radical cations of 1-chlorobutane,
J. Phys. Org. Chem. 17 (2004) 665–674.
[64] J. Howard, K.U. Ingold, The inhibited autoxidation of styrene: Part IV. Solvent
effects, Can. J. Chem. 42 (1964) 1044–1056.
[65] G. Litwinienko, K. Ingold, Solvent effects on the rates and mechanisms of reac-
tion of phenols with free radicals, Acc. Chem. Res. 40 (2007) 222–230.
[66] M.I. de Heer, P. Mulder, H.-G. Korth, K.U. Ingold, J. Lusztyk, Hydrogen atom
abstraction kinetics from intramolecularly hydrogen bonded ubiquinol-0 and
other (poly) methoxy phenols, J. Am. Chem. Soc. 122 (2000) 2355–2360.
[67] Y. Fu, Y. Mou, B.-L. Lin, L. Liu, Q.-X. Guo, Structures of the XY-NO molecules and
homolytic dissociation energies of the Y-NO bonds (Y = C, N, O, S), J. Phys. Chem.
A 106 (2002) 12386–12392.
[68] R.P. Pesavento, W.A. Van Der Donk, Tyrosyl radical cofactors, Adv. Protein Chem.
58 (2001) 317–385.
[69] M. Högbom, M. Galander, M. Andersson, M. Kolberg, W. Hofbauer, G. Lassmann,
P. Nordlund, F. Lendzian, Displacement of the tyrosyl radical cofactor in ribonu-
cleotide reductase obtained by single-crystal high-field EPR and 1.4-Å X-ray
data, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3209–3214.
[49] A.C. Hopkinson, Radical cations of amino acids and peptides: structures and
stabilities, Mass Spectrom. Rev. 28 (2009) 655–671.
[50] M. Xu, T. Song, Q. Quan, Q. Hao, D.-C. Fang, C.-K. Siu, I.K. Chu, Effect of the N-
terminal basic residue on facile C␣–C bond cleavages of aromatic-containing
peptide radical cations, Phys. Chem. Chem. Phys. 13 (2011) 5888–5896.
[51] D.M. Boghaei, S. Mohebi, Synthesis, characterization and study of vanadyl
tetradentate Schiff base complexes as catalyst in aerobic selective oxidation
of olefins, J. Mol. Catal. A: Chem. 179 (2002) 41–51.
[52] A. Ray, G.M. Rosair, R. Kadam, S. Mitra, Three new mono–di–trinuclear cobalt
complexes of selectively and non-selectively condensed Schiff bases with N2O
and N2O2 donor sets: syntheses, structural variations, EPR and DNA binding
studies, Polyhedron 28 (2009) 796–806.
[70] C.W. Hoganson, C. Tommos, The function and characteristics of tyro-
syl radical cofactors, Biochim. Biophys. Acta Bioenerg. 1655 (2004)
116–122.