Angewandte
Chemie
continuous flow of O or air was bubbled through the vial, and the
[10] For proline-catalyzed a-aminooxylation reactions reported by
2
reaction was exposed to visible light by a 250-W high-pressure sodium
lamp. After 1 hour, complete conversion had occurred, and the
reaction was quenched either by the addition of brine followed by
extraction with EtOAc to furnish a-hydroxyketone ent-2a or by
other groups, see: a) G. Zhong, Angew. Chem. 2003, 115, 4379;
Angew. Chem. Int. Ed. 2003, 42, 4247; b) S. P. Brown, M. P.
Brochu, C. J. Sinz, D. W. C. MacMillan, J. Am. Chem. Soc. 2003,
125, 10808; c) M. Y. Hayashi, J. Yamaguchi, T. Sumaiya, M.
Shoji, Angew. Chem. 2004, 116, 1132; Angew. Chem. Int. Ed.
2004, 43, 1112; d) M. Y. Hayashi, J. Yamaguchi, K. Hibino, M.
Shoji, Tetrahedron Lett. 2003, 44, 8293; for the use of proline
derivatives as catalysts, see: N. Momiyama, H. Torii, S. Saito, H.
Yamamoto, Proc. Natl. Acad. Sci. USA 2004, 101, 5374, and
reference [9b].
in situ reduction with NaBH to afford the corresponding optically
4
active crude diol ent-3a (trans/cis 3:1). The crude ent-2a existed as an
oligomeric mixture that, upon standing, formed the dimer, which was
isolated by silica-gel column chromatography (EtOAc/pentane 1:20)
with 56% ee (determined by chiral-phase GC-analysis). GC: (CP-
ꢀ
1
Chirasil-Dex CB); Tinj = 2508C, T = 2758C, flow = 1.8 mLmin
,
det
ꢀ
1
ti = 608C (9 min), rate = 858Cmin , t = 2008C (5 min); retention
[11] For examples of proline-catalyzed a aminations, see: a) A.
Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A.
Jørgensen, Angew. Chem. 2002, 114, 1868; Angew. Chem. Int.
Ed. 2002, 41, 1790; b) B. List, J. Am. Chem. Soc. 2002, 124, 5656.
[12] a) S. Pizarello, A. L. Weber, Science 2004, 303, 1151; b) L. E.
Orgel, Science 2000, 290, 1306.
[13] In addition to the a oxidation of 1a, the DMSO was also
oxidized to the corresponding dimethyl sulfone at prolonged
reaction times.
f
times of 2a: tmaj = 10.64 min, tmin = 10.66 min. The trans-3a and cis-3a
diols were isolated by silica-gel column chromatography (EtOAc/
pentane 1:1) in a combined yield of 92% with 56% ee of the pure
trans-3a diol (determined by GC analyses). (1S, 2S)-trans-cyclohex-
ane-1,2-diol: [a] = + 21 (c = 0.2, CHCl ); GC: (CP-Chirasil-Dex
D
3
ꢀ
1
CB); Tinj = 2508C, Tdet = 2758C, flow = 1.8 mLmin
2 min), t = 1108C, rate = 0.38Cmin ; retention times of acetylated
,
ti = 908C
ꢀ1
(
f
compound: tmaj = 9.75 min, tmin=9.61 min.
[
14] We were only able to isolate the a-hydroxyketone adducts and
not potential a-hydroperoxide intermediate. Hence, we
Received: April 12, 2004
Revised: August 12, 2004
a
believe that the a-hydroperoxide intermediate is rapidly con-
verted into the a-hydroxyketone product.
[
15] A. Cꢂrdova, H. Sundꢁn, M. Engqvist, I. Ibrahem, J. Casas, J. Am.
Chem. Soc. 2004, 126, 8914.
16] a) E. J. Corey, H. E. Ensley, J. Am. Chem. Soc. 1975, 97, 6908;
b) E. F. J. de Vries, L. Ploeg, M. Colao, J. Brussee, A. van der -
Gen, Tetrahedron: Asymmetry 1995, 6, 1123.
Keywords: amino acids · asymmetric catalysis · ketones ·
molecular oxygen · oxidation
.
[
[
1] a) H. D. Holland, The Chemistry of the Atmosphere and Oceans,
[
17] A. Cꢂrdova, W. Notz, C. F. Barbas III, Chem. Commun. 2002, 24,
Wiley, New York, 1978; b) J. F. Kasting, T. P. Ackerman, Science
3024. For a Zn – amino acid mediated sugar synthesis under
1986, 234, 1383; c) J. H. Carver, Nature 1981, 292, 136; d) K.
prebiotic conditions, see: J. Kofoed, M. Machuqueiro, J.-L.
Plankensteiner, H. Reiner, B. Schranz, B. M. Rode, Angew.
Chem. 2004, 116, 1922; Angew. Chem. Int. Ed. 2004, 43, 1886.
2] a) C. S. Foote, Acc. Chem. Res. 1968, 1, 104; b) C. Schweitzer, R.
Schmidt, Chem. Rev. 2003, 103, 1685.
3] a) B. Halliwell, M. C. John, Free Radical in Biology and
Medicine, 2nd ed., Clarwndon, Oxford, 1982; b) N. I. Krinsky
in Biological roles of singlet oxygen, Vol. 40 (Ed.: H. H. Wasser-
man), Academic Press, New York, 1979, pp. 597 – 641.
Reymond, T. Darbre, Chem. Commun. 2004, 26, 1540.
[
[
[
4] a) B. Samuelsson, J. Am. Chem. Soc. 1965, 87, 3011; b) P.
Wentworth, Jr., L. H. Jones, A. D. Wentworth, X. Zhu, N. A.
Larsen, I. A. Wilson, X. Xu, W. A. Goddard III, K. D. Janda, A.
Eschenmoser, R. A. Lerner, Science 2001, 293, 1806.
[
5] a) For an example in total synthesis see: K. C. Nicolaou, Z. Yang,
G.-q. Shi, J. L. Gunzner, K. A. Agrios, P. Gärtner, Nature 1998,
392, 264; b) For diasteroselective photooxygenations, see: M.
Prein, W. Adam, Angew. Chem. 1996, 108, 519; Angew. Chem.
Int. Ed. Engl. 1996, 35, 477.
[
6] M. Eissen, J. O. Metzger, E. Schmidt, U. Schneidewind, Angew.
Chem. 2002, 114, 402; Angew. Chem. Int. Ed. 2002, 41, 414.
7] a) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840; Angew.
Chem. Int. Ed. 2001, 40, 3726; b) B. List, Tetrahedron 2002, 58,
[
5573; c) E. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481;
d) R. O. Duthaler, Angew. Chem. 2003, 115, 1005; Angew. Chem.
Int. Ed. 2003, 42, 975.
[
8] a) L. Bohe, G. Hanquet, M. Lusinchi, X. Lusinchi, Tetrahedron
Lett. 1993, 34, 7271; b) M. F. A. Adamo, V. K. Aggarwal, M. A.
Sage, J. Am. Chem. Soc. 2000, 122, 8317; c) A. Armstrong,
Angew. Chem. 2004, 116, 1484; Angew. Chem. Int. Ed. 2004, 43,
1
460, and references therein.
9] a) A. Bøgevig, H. Sundꢁn, A. Cꢂrdova, Angew. Chem. 2004, 116,
129; Angew. Chem. Int. Ed. 2004, 43, 1109; b) A. Cꢂrdova, H.
Sundꢁn, A. Bøgevig, M. Johansson, F. Himo, Chem. Eur. J. 2004,
0, 3673; c) A. Cꢂrdova, Chem. Eur. J. 2004, 10, 1937; d) A.
[
1
1
Cꢂrdova, Tetrahedron Lett. 2004, 45, 3949; e) A. Cꢂrdova, Acc.
Chem. Res. 2004, 37, 102; f) A. Cꢂrdova, Synlett 2003, 1651, and
references therein.
Angew. Chem. Int. Ed. 2004, 43, 6532 –6535
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6535