S. Chandrasekhar et al. / Tetrahedron Letters 49 (2008) 2969–2973
2973
9. Gruner, S. A. W.; Truffault, V.; Georg, V.; Locardi, E.; Stockle, M.;
Kessler, H. Chem. Eur. J. 2002, 8, 4365.
10. Chakraborty, T. K.; Roy, S.; Kumar, S. K.; Kunwar, A. C.
Tetrahedron Lett. 2005, 46, 3065.
11. Sharma, G. V. M.; Reddy, K. R.; Krishna, P. R.; Sankar, A. R.;
Jayaprakash, P.; Jagannnadh, B.; Kunwar, A. C. Angew. Chem., Int.
Ed. 2004, 43, 3961.
12. Norden, B.; Wittung-Stafshede, P.; Ellouze, C.; Hye-Kyung, K.;
Mortensen, K.; Takahashi, M. J. Biol. Chem. 1998, 273, 15682.
13. Petrovykh, D. Y.; Dieste, V. P.; Opdahl, A.; Suda, H. K.; Sullivan, J.
M.; Tarlov, M. J.; Himpsel, F. J.; Whitman, L. J. J. Am. Chem. Soc.
2006, 128, 2.
14. Chakraborty, T. K.; Koley, D.; Prabhakar, S.; Ravi, R.; Kunwar, A.
C. Tetrahedron 2005, 61, 9506.
15. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Richards, M. R.;
Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 7574.
16. Wang, X.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc. 2000,
122, 4821.
17. Woll, M. G.; Fisk, J. D.; LePlae, P. R.; Gellman, S. H. J. Am. Chem.
Soc. 2002, 124, 12447.
18. LePlae, P. R.; Fisk, J. D.; Porte, E. A.; Weisblum, B.; Gellman, S. H.
J. Am. Chem. Soc. 2002, 124, 6820.
ascertain the observed conformational features. However,
the synthesis of higher oligomers beyond tetramers using
the conventional Boc-protected manual synthesis, was
hampered due to solubility problems. In order to derive
the details of specific helical folding in more populated
foldamers, solid phase synthetic methods have to be
employed, and work in this direction is in progress and will
be reported elsewhere.
In summary, we have discussed the synthesis and confor-
mational studies of AZT derived trans-b-amino acid short
trimer, and tetramer homooligomers, by using CD, NMR
and restrained MD techniques. The results have shown
the signatures of right-handed 12-helical turns that the
backbone adopts, which is consistent with Gellman’s
12-helices in the oligomers of trans-b-amino acids. In accor-
dance with the aim of our present work, the results encour-
age us to design functional oligonucleotides possessing well-
defined backbone folding and having their bases positioned
in a geometrically defined manner. However, detailed sec-
ondary structural features can only be obtained in hexamers
and beyond, and efforts towards this are in progress.30
19. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.;
Huang, X.; Barchi, J. J., Jr.; Gellman, S. H. Nature 1997, 387,
381.
20. Epp, J. B.; Widlanski, T. S. J. Org. Chem. 1999, 64, 293.
21. Nozaki, S.; Muramatsu, I. Bull. Chem. Soc. Jpn. 1982, 55, 2165.
22. Spectroscopic data for compound 10: 1H NMR data listed in Table 1.
MS (ESI): m/z 1103 [M+Na]+.
Acknowledgement
23. Spectroscopic data for compound 9; 1H NMR (CDCl3, 500 MHz), d
G.P.K., thanks UGC, M.U.K. and C.N. thank CSIR,
New Delhi, India for research fellowships.
10.3 (br s, 3 NH), 8.57 (d, JNH,2 = 7.3 Hz, 1H), 8.50 (d, JNH,2
=
7.3 Hz, 1H), 8.06 (s, 2H), 7.91 (s, 1H), 6.63 (br s, 1H), 6.49 (t,
0
0
J4,3 = 8.4 Hz, J4;3 ¼ 5:6 Hz, 1H), 6.20 (t, J4,3 = 6.7 Hz, J4;3
¼
References and notes
0
6:7 Hz, 1H), 6.12 (t, J4,3 = 6.5 Hz, J4;3 ¼ 6:5 Hz, 1H), 4.7 (m, 1H),
4.6 (m, 1H), 4.57 (d, J1,2 = 2.8 Hz, 1H), 4.34 (d, J1,2 = 4.2 Hz, 1H),
4.30 (m, 1H), 4.29 (d, J1,2 = 4.2 Hz, 1H), 3.81 (s, 3H), 2.26–2.54 (m,
6H), 1.89–1.97 (s, 9H), 1.45 (s, 9H); HRMS (ESI): Calcd for
C36H45N9O15Na: 866.2932, found: 866.2971 [M+Na]+.
24. Anderson, N. H.; Neidigh, J. W.; Harris, S. M.; Lee, G. M.; Liu, Z.;
Tong, H. J. Am. Chem. Soc. 1997, 119, 8547.
1. Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado, W. F. Nature
Chem. Biol. 2007, 3, 252 and references cited therein.
2. Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. Biodiversity 2004, 1,
1111 and references cited therein.
3. Roy, R. S.; Karle, I. L.; Raghothama, S.; Balaram, P. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 16478.
4. Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
5. Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101,
3219.
6. Chandrasekhar, S.; Reddy, M. S.; Jagadeesh, B.; Prabhakar, A.;
Ramana Rao, M. H. V.; Jagannadh, B. J. Am. Chem. Soc. 2004, 126,
13586.
7. Chandrasekhar, S.; Reddy, M. S.; Babu, B. N.; Jagadeesh, B.;
Prabhakar, A.; Jagannadh, B. J. Am. Chem. Soc. 2005, 127, 9664.
8. Jagadeesh, B.; Prabhakar, A.; Sarma, G. D.; Chandrasekhar, S.;
Chandrasekhar, G.; Reddy, M. S.; Jagannadh, B. Chem. Commun.
2007, 371.
25. Applequist, J.; Bode, K. A.; Appella, D. H.; Christianson, L. A.;
Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4891.
26. Banarjee, A.; Balaram, P. Curr. Sci. India 1997, 73, 106.
27. Sounier, R.; Blanchard, L.; Wu, Z.; Boisbouvier, J. J. Am. Chem. Soc.
2007, 129, 472.
28. Neuhaus, D.; Williamson, M. P. The Nuclear Overhauser Effect
in Structural and Conformational Analysis; VCH Publishers, Inc.,
1989.
29. Hetenyi, A.; Mandity, I. M.; Martinek, T. A.; Toth, G. K.; Fulop, F.
J. Am. Chem. Soc. 2005, 127, 547.
30. Threlfall, R.; Davies, A.; Howarth, N. M.; Fisher, J.; Cosstick, R.
Chem. Commun. 2008, 585.