ChemComm
Communication
5
(a) M. Melaimi, R. Jazzar, M. Soleilhavoup and G. Bertrand, Angew.
Chem., Int. Ed., 2017, 56, 10046; (b) U. S. D. Paul and U. Radius, Eur.
J. Inorg. Chem., 2017, 3362; (c) K. C. Mondal, S. Roy and H. W. Roesky,
Chem. Soc. Rev., 2016, 45, 1080; (d) S. Roy, K. C. Mondal and
H. W. Roesky, Acc. Chem. Res., 2016, 49, 357; (e) M. Soleilhavoup and
G. Bertrand, Acc. Chem. Res., 2015, 48, 256; ( f ) M. Melaimi,
M. Soleilhavoup and G. Bertrand, Angew. Chem., Int. Ed., 2010, 49, 8810.
D. Martin, A. Baceiredo, H. Gornitzka, W. W. Schoeller and G. Bertrand,
Angew. Chem., Int. Ed., 2005, 44, 1700.
6
7
8
A. J. Arduengo, J. R. Goerlich and W. J. Marshall, Liebigs Ann./Recl.,
1
997, 365.
(a) D. Holschumacher, C. G. Hrib, P. G. Jones and M. Tamm, Chem.
Commun., 2007, 3661; (b) V. Lavallo, Y. Canac, B. Donnadieu, W. W.
Schoeller and G. Bertrand, Science, 2006, 312, 722; (c) V. Lavallo,
Y. Ishida, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed.,
2
006, 45, 6652.
Fig. 4 Solid-state structures of 4 and 5 (all hydrogen atoms are omitted
for clarity. Thermal ellipsoids are set at the 50% probability level). Selected
9
E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran,
G. Frenking and G. Bertrand, Science, 2009, 326, 556.
bond lengths [Å] and angles [1]: 4 Au1–C22 2.052(5), Au1–C15 2.057(4), 10 G. Guisado-Barrios, J. Bouffard, B. Donnadieu and G. Bertrand,
B1–N5 1.616(5), C15–N5 1.309(6), B2–C15 1.675(6), C16–N5 1.451(5),
C22–Au1–C15 176.96(15), N5–C15–B2 112.2(3), C15–N5–B1 120.0(3),
B2–C15–Au1 127.3(3), N5–C15–Au1 120.3(3), C15–N5–C16 119.8(3),
Angew. Chem., Int. Ed., 2010, 49, 4759.
1
1
1
1
1
1
1 Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III, P. V. R.
Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2010, 132, 14370.
2 E. Tom ´a s-Mendivil, M. M. Hansmann, C. M. Weinstein, R. Jazzar,
M. Melaimi and G. Bertrand, J. Am. Chem. Soc., 2017, 139, 7753.
3 C. M. Weinstein, G. P. Junor, D. R. Tolentino, R. Jazzar, M. Melaimi
and G. Bertrand, J. Am. Chem. Soc., 2018, 140, 9255.
4 S. K. Bose, K. Fucke, L. Liu, P. G. Steel and T. B. Marder, Angew.
Chem., Int. Ed., 2014, 53, 1799.
5 B. Wang, Y. Li, R. Ganguly, H. Hirao and R. Kinjo, Nat. Commun.,
C16–N5–B1 119.5(3);
5
Au1–Cl1 2.3061(14), Au1–C15 2.003(5),
B1–C1 1.602(7), B1–C15 1.651(7), B2–N5 1.623(7), C15–N5 1.318(6),
C16–N5 1.456(6), C1–B1–C15 121.7(4), N5–C15–B1 113.1(4), B1–C15–Au1
1
1
27.1(3), N5–C15–Au1 119.7(4), C15–N5–C16 120.4(4), C15–N5–B2
18.9(4), C16–N5–B2 120.1(4), C15–Au1–Cl1 178.83(15).
2016, 7, 11871.
6 (a) T. W. Hudnall, E. J. Moorhead, D. G. Gusev and C. W. Bielawski,
J. Org. Chem., 2010, 75, 2763; (b) E. Despagnet-Ayoub, H. Gornitzka,
D. Bourissou and G. Bertrand, Eur. J. Org. Chem., 2003, 2039;
(c) N. Merceron, K. Miqueu, A. Baceiredo and G. Bertrand, J. Am.
Chem. Soc., 2002, 124, 6806; (d) D. Amsallem, S. Mazi `e res, V. Piquet-
Faur ´e , H. Gornitzka, A. Baceiredo and G. Bertrand, Chem. – Eur. J.,
products 2 and 3 involving an indole fragment and a ketenimine
moiety, respectively. A [4+2] cycloaddition reaction between 1
and an isonitrile is proposed as the initial step for the formation
of 2 and 3, suggesting the generation of a transient B,N-carbene
intermediate. Indeed, a stoichiometric reaction of 1 with the
tolyl(phenyl isonitrile)gold complex led to the formation of an
isolable bicyclic (amino)(borata)carbene–gold complex 4, which
could be further converted to the gold chloride complex 5.
Investigation of the potential ability of 5 as a pre-catalyst is
2
002, 8, 5305; (e) S. Sol ´e , H. Gornitzka, W. W. Schoeller,
D. Bourissou and G. Bertrand, Science, 2001, 292, 1901.
1
7 For the use of isonitrile-metal complexes, see: (a) T. Wurm, F. Mulks,
C. R. N. B ¨o hling, D. Riedel, P. Zargaran, M. Rudolph, F. Rominger and
A. S. K. Hashmi, Organometallics, 2016, 35, 1070; (b) V. P. Boyarskiy,
N. A. Bokach, K. V. Luzyanin and V. Y. Kukushkin, Chem. Rev., 2015,
115, 2698; (c) D. Riedel, T. Wurm, K. Graf, M. Rudolph, F. Rominger and
A. S. K. Hashmi, Adv. Synth. Catal., 2015, 357, 1515; (d) O. Ekkert,
G. G. Miera, T. Wiegand, H. Eckert, B. Schirmer, J. L. Petersen,
C. G. Daniliuc, R. Fr ¨o hlich, S. Grimme, G. Kehr and G. Erker, Chem.
Sci., 2013, 4, 2657; (e) A. S. K. Hashmi, D. Riedel, M. Rudolph,
F. Rominger and T. Oeser, Chem. – Eur. J., 2012, 18, 3827; ( f ) A. G.
Tskhovrebov, K. V. Luzyanin, F. M. Dolgushin, M. F. C. Guedes da Silva,
A. J. L. Pombeiro and V. Y. Kukushkin, Organometallics, 2011, 30, 3362;
2
0,21
underway in our laboratory.
We are grateful to Nanyang Technological University (NTU)
and the Singapore Ministry of Education (MOE2015-T2-2-032)
for financial support.
Conflicts of interest
(
g) A. S. K. Hashmi, C. Lothsch u¨ tz, C. B ¨o hling and F. Rominger,
Organometallics, 2011, 30, 2411; (h) F. Bauer, H. Braunschweig and
K. Schwab, Organometallics, 2010, 29, 934; (i) A. S. K. Hashmi,
C. Lothsch u¨ tz, C. B ¨o hling, T. Hengst, C. Hubbert and F. Rominger,
Adv. Synth. Catal., 2010, 352, 3001; ( j) A. S. K. Hashmi, T. Hengst,
C. Lothsch u¨ tz and F. Rominger, Adv. Synth. Catal., 2010, 352, 1315;
(k) J. P. Weyrauch, A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schetter,
A. Littmann, M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey and
J. W. Bats, Chem. – Eur. J., 2010, 16, 956; (l) K. V. Luzyanin, M. F. C.
Guedes da Silva, V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chim.
Acta, 2009, 362, 833; (m) C. Bartolom ´e , Z. Ramiro, P. P ´e rez-Gal ´a n,
C. Bour, M. Raducan, A. M. Echavarren and P. Espinet, Inorg. Chem.,
2008, 47, 11391.
The authors declare no conflict of interest.
Notes and references
1
2
3
A. Igau, H. Gr u¨ tzmacher, A. Baceiredo and G. Bertrand, J. Am. Chem.
Soc., 1988, 110, 6463.
A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1991,
1
13, 361.
(a) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt and
S. Inoue, Chem. Rev., 2018, 118, 9678; (b) S. D ´ı ez-Gonz ´a lez,
N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic
Tools, Royal Society of Chemistry, Cambridge, 2016; (c) M. N. 18 T. Seki, Y. Takamatsu and H. Ito, J. Am. Chem. Soc., 2016, 138, 6252.
Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014, 19 M. Pa ˇz ick ´y , A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov,
5
10, 485; (d) S. P. Nolan, N-Heterocyclic Carbenes: Effective Tools for
F. Rominger, C. J ¨a kel, A. S. K. Hashmi and M. Limbach, Organo-
metallics, 2010, 29, 4448.
Organometallic Synthesis, Wiley-VCH, Weinheim, 2014; (e) T. Rovis and
S. P. Nolan, Synlett, 2013, 24, 1188; ( f ) C. D. Martin, M. Soleilhavoup 20 (a) S. A. Shahzad, M. A. Sajid, Z. A. Khan and D. Canseco-Gonzalez,
and G. Bertrand, Chem. Sci., 2013, 4, 3020; (g) T. Droege and F. Glorius,
Angew. Chem., Int. Ed., 2010, 49, 6940; (h) A. J. Arduengo and
G. Bertrand, Chem. Rev., 2009, 109, 3209; (i) F. E. Hahn and M. C.
Jahnke, Angew. Chem., Int. Ed., 2008, 47, 3122.
V. Lavallo, Y. Canac, C. Pr ¨a sang, B. Donnadieu and G. Bertrand,
Angew. Chem., Int. Ed., 2005, 44, 5705.
Synth. Commun., 2017, 47, 735; (b) A. M. Asiria and A. S. K. Hashmi,
Chem. Soc. Rev., 2016, 45, 4471; (c) S. P. Nolan, Acc. Chem. Res., 2011,
44, 91; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008,
108, 3351; (e) D. J. Gorin and F. D. Toste, Nature, 2007, 446, 395;
( f ) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.
4
21 For the preliminary result of our catalytic studies, see the ESI†.
13014 | Chem. Commun., 2019, 55, 13012--13014
This journal is ©The Royal Society of Chemistry 2019