Angewandte
Chemie
calcd for C H NO : C 74.10, H 8.16, N 5.40; found: C 74.21, H 8.27,
1
6
21
2
N 5.29.
Received: December 3, 2004
Published online: March 10, 2005
Keywords: acylation · asymmetric catalysis · rearrangement ·
.
umpolung
[
1] a) H. Stetter, M. Schreckenberg, Angew. Chem. 1973, 85, 89;
Angew. Chem. Int. Ed. 1973, 12, 81; b) H. Stetter, H. Kuhlmann,
Org. React. 1991, 40, 407 – 496.
[
2] J. H. Gong, Y. J. Im, K. Y. Lee, J. N. Kim, Tetrahedron Lett. 2002,
43, 1247 – 1251.
[
3] a) H. Stetter, Angew. Chem. 1976, 88, 695 – 736; Angew. Chem.
Int. Ed. 1976, 15, 639 – 647; b) H. Stetter, H. Kuhlmann, Chem.
Ber. 1976, 109, 2890 – 2896; c) H. Stetter, M. Schreckenberg, K.
Wiemann, Chem. Ber. 1976, 109, 541 – 545; d) H. Stetter, H. J.
Bender, Chem. Ber. 1981, 114, 1226 – 1233; e) H. Stetter, L.
Simons, Chem. Ber. 1985, 118, 3172 – 3187; f) H. Stetter, H.
Skobel, Chem. Ber. 1987, 120, 643 – 645.
Scheme 4. Proposed catalytic cycle.
[
4] a) D. Enders, K. Breuer in Comprehensive Asymmetric Catalysis,
Vol. 3 (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer,
New York, 1999, pp. 1093 – 1102; for examples of enantioselec-
tive intramolecular Stetter reactions, see: b) D. Enders, K.
Breuer, J. Runsink, J. H. Teles, Helv. Chim. Acta 1996, 79, 1899 –
1902; c) M. S. Kerr, J. Read de Alaniz, T. Rovis, J. Am. Chem.
Soc. 2002, 124, 10298 – 10299; d) M. S. Kerr, T. Rovis, J. Am.
Chem. Soc. 2004, 126, 8876 – 8877; e) S. M. Mennen, J. T. Blank,
M. B. Tran-Dubꢂ, J. E. Imbriglio, S. J. Miller, Chem. Commun.
development of 1) those strategies that take advantage of the
high diastereoselectivity of the retro [1,4] Brook rearrange-
ment and 2) phosphite catalysts that deliver more highly
enantioenriched products.
2005, 195 – 197.
[5] A. G. Brook, Acc. Chem. Res. 1974, 7, 77 – 84.
[6] W. H. Moser, Tetrahedron 2001, 57, 2065 – 2084.
[7] A. DeglꢀInnocenti, A. Ricci, A. Mordini, G. Reginato, V.
Colotta, Gazz. Chim. Ital. 1987, 117, 645 – 648.
Experimental Section
7
a (entry 1, representative procedure): The acyl silane (0.42 mmol)
[8] A. E. Mattson, A. R. Bharadwaj, K. A. Scheidt, J. Am. Chem.
Soc. 2004, 126, 2314 – 2315.
[9] A. R. Bharadwaj, K. A. Scheidt, Org. Lett. 2004, 6, 2465 – 2468.
[10] K. Takeda, T. Tanaka, Synlett 1999, 705 – 708.
[11] D. Enders, L. Tedeschi, J. W. Bats, Angew. Chem. 2000, 112,
4774 – 4776; Angew. Chem. Int. Ed. 2000, 39, 4605 – 4607.
[12] X. Linghu, J. R. Potnick, J. S. Johnson, J. Am. Chem. Soc. 2004,
126, 3070 – 3071.
and amide (0.46 mmol, 1.1 equiv) were added to a dry pear-shaped
flask in the glovebox, while the TADDOL phosphite (0.084 mmol,
0
0
.2 equiv) and lithium hexamethyldisilazide (LHMDS; 0.29 mmol,
.7 equiv) were added to a dry round-bottom flask with a magnetic
stirring bar. The flasks were removed from the glovebox and Et O
2
(3.0 mL) was added to the metallophosphite and stirred in an N2
atmosphere. The acyl silane/amide mixture was added to the metal-
lophosphite by cannula and the delivery flask was rinsed with Et O
[13] The racemic TADDOL phosphite 5 regularly provided higher
yields than simpler phosphites, for example, diethyl phosphite.
[14] G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 7599 – 7662.
[15] I. Fleming, Chemtracts: Org. Chem. 1996, 9, 1 – 64.
[16] M. M. Mader, J. C. Edel, J. Org. Chem. 1998, 63, 2761 – 2764.
[17] L. A. Dakin, S. E. Schaus, E. N. Jacobsen, J. S. Panek, Tetrahe-
dron Lett. 1998, 39, 8947 – 8950.
2
(7 mL). The resulting mixture was stirred in an N2 atmosphere at
room temperature until the starting material was consumed (TLC
analysis). The solvent was removed in vacuo and an aliquot was taken
1
to determine the diastereoselectivity by H NMR spectroscopic
analysis. The residue was redissolved in THF. The reaction mixture
was treated with a solution of tetrabutylammonium fluoride in THF
(
TBAF; 1m, 0.84 mmol, 2.0 equiv) and immediately quenched with
[18] CCDC-253985 (4d) and -253984 (8d) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
several milliliters of a saturated aqueous solution of NH Cl. The
product was then extracted with Et O, washed with water (2 ꢁ 10 mL),
and washed with a saturated aqueous solution of NaHCO3 (2 ꢁ
4
2
1
0 mL). The organic extracts were combined and dried over
[19] The 2R configuration of 7d was assigned through chemical
correlation (see the Supporting Information).
Na SO , filtered, and concentrated. The product then was purified
2
4
by flash chromatography with ethyl acetate/hexanes (30:70) as the
eluent to afford the pure 1,4-dicarbonyl compound in 76% yield.
Analytical data for 7a: IR (thin film): n˜ = 3061, 2933, 2856, 1684, 1639,
[20] D. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534 – 541.
[21] (Silyloxy)phosphonate anion 2 has been previously prepared
stoichiometrically: R. E. Koenigkramer, H. Zimmer, Tetrahe-
dron Lett. 1980, 21, 1017 – 1020.
ꢁ1 1
1
444, 1369, 1223, 1196, 1122, 1016, 978, 706 cm ; H NMR (400 MHz,
CDCl ): d = 8.07–7.98 (m, 2H), 7.54–7.47 (m, 1H), 7.47–7.39 (m, 2H),
[22] C. Gibson, T. Buck, M. Noltemeyer, R. Brꢃckner, Tetrahedron
Lett. 1997, 38, 2933 – 2936, and references therein.
3
4
2
7
1
.10–4.00 (m, 1H), 3.53–3.36 (m, 4H), 3.02 (dd, J = 16.0, 8.8 Hz, 1H),
.40 (dd, J = 16.4, 4.8 Hz, 1H), 1.66–1.49 (m, 6H), 1.17 ppm (d, J =
1
3
.2 Hz, 3H); C NMR (100 MHz, CDCl ): d = 203.9, 169.3, 136.1,
3
32.6, 128.41, 128.40, 46.4, 42.6, 37.0, 36.9, 26.2, 25.4, 24.4, 17.8 ppm;
TLC (ethyl acetate/hexanes, 40:60) R = 0.32; elemental analysis (%)
f
Angew. Chem. Int. Ed. 2005, 44, 2377 –2379
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2379