Angewandte Chemie International Edition
10.1002/anie.201904193
COMMUNICATION
Eigenbrot, T. Nguyen, W. A. Solis, R. N. Fuji, K. M. Flagella, D.
Patel, S. D. Spencer, L. A. Khawli, A. Ebens, W. L. Wong, R.
Vandlen, S. Kaur, M. X. Sliwkowski, R. H. Scheller, P. Polakis, J. R.
Junutula, Nat. Biotechnol. 2012, 30, 184-189; b) P. J. Burke, J. Z.
Hamilton, S. C. Jeffrey, J. H. Hunter, S. O. Doronina, N. M. Okeley,
J. B. Miyamoto, M. E. Anderson, I. J. Stone, M. L. Ulrich, J. K.
Simmons, E. E. McKinney, P. D. Senter, R. P. Lyon, Mol. Cancer
Ther. 2017, 16, 116.
A. Beck, L. Goetsch, C. Dumontet, N. Corvaïa, Nat. Rev. Drug
Discov. 2017, 16, 315.
S. O. Doronina, B. E. Toki, M. Y. Torgov, B. A. Mendelsohn, C. G.
Cerveny, D. F. Chace, R. L. DeBlanc, R. P. Gearing, T. D. Bovee,
C. B. Siegall, J. A. Francisco, A. F. Wahl, D. L. Meyer, P. D. Senter,
Nat. Biotechnol. 2003, 21, 778-784.
contrast, this was only observed in two mice treated with
brentuximab-10 (Figure 3f and S10 in the supporting information),
Hence, we were able to show a drastic increase in median
survival from 21 days for commercial Adcetris® to 48 days for
brentuximab-10 (Figure 3g). We strongly believe that this
increase by a factor of 2.3 in comparison to Adcetris indicates a
promising antitumor activity of our novel phosphonamidate-linked
ADCs. It should be noted that all of the mice, treated with both
constructs did not significantly change in bodyweight over the
whole observation period (Figure S10 in the supporting
information).
®
[
8]
[9]
[10]
J. F. Ponte, X. Sun, N. C. Yoder, N. Fishkin, R. Laleau, J. Coccia, L.
Lanieri, M. Bogalhas, L. Wang, S. Wilhelm, W. Widdison, J. Pinkas,
T. A. Keating, R. Chari, H. K. Erickson, J. M. Lambert, Bioconjugate
Chem. 2016, 27, 1588-1598.
In summary, we present ethynylphosphonamidates as cysteine
reactive handles for the construction of next generation cancer
therapeutics. Making use of the SPhR, we obtained a new
modular diethyleneglycol modified ethynylphosphonamidate
building block for the synthesis of hydrophilic, Cys-selective linker
systems for the conjugation of unpolar payloads. With this, we
synthesized an ADC from brentuximab and MMAE, and
demonstrated appropriate linkage stability combined with
[11]
R. P. Lyon, J. R. Setter, T. D. Bovee, S. O. Doronina, J. H. Hunter,
M. E. Anderson, C. L. Balasubramanian, S. M. Duniho, C. I. Leiske,
F. Li, P. D. Senter, Nat. Biotechnol. 2014, 32, 1059.
B. Bernardim, P. M. S. D. Cal, M. J. Matos, B. L. Oliveira, N.
Martínez-Sáez, I. S. Albuquerque, E. Perkins, F. Corzana, A. C. B.
Burtoloso, G. Jiménez-Osés, G. J. L. Bernardes, Nat. Commun.
[12]
2
016, 7, 13128.
D. Kalia, P. V. Malekar, M. Parthasarathy, Angew. Chem. Int. Ed.
016, 55, 1432-1435.
[13]
2
[
[
14]
15]
O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
C. D. Medley, J. Kay, Y. Li, J. Gruenhagen, P. Yehl, N. P. Chetwyn,
Anal. Chim. Acta 2014, 850, 92-96.
J. R. McCombs, S. C. Owen, The AAPS journal 2015, 17, 339-351.
a) I. Hollander, A. Kunz, P. R. Hamann, Bioconjugate Chem. 2008,
19, 358-361; b) A. Wakankar, Y. Chen, Y. Gokarn, F. S. Jacobson,
mAbs 2011, 3, 161-172.
beneficial in vivo antitumor activity, resulting in an increased
median survival from 21 days for Adcetris® to 48 days for the
[16]
[17]
phosphonamidate linkage. The conjugation protocol is
straightforward, using only minimal drug excesses and facilitates
a one-pot synthesis of an ADC starting from native antibodies.
Taken together, we believe that ethynylphosphonamidates
described herein facilitate the straightforward construction of
ADCs for cancer therapeutics with great promise for other
pharmacological targets.
[
[
18]
19]
A. Saluja, D. S. Kalonia, Int. J. Pharm. 2008, 358, 1-15.
A. Mullard, Nat. Rev. Drug Discov. 2013, 12, 329.
[20]
R. Y. Zhao, S. D. Wilhelm, C. Audette, G. Jones, B. A. Leece, A. C.
Lazar, V. S. Goldmacher, R. Singh, Y. Kovtun, W. C. Widdison, J.
M. Lambert, R. V. J. Chari, J. Med. Chem. 2011, 54, 3606-3623.
R. P. Lyon, T. D. Bovee, S. O. Doronina, P. J. Burke, J. H. Hunter,
H. D. Neff-LaFord, M. Jonas, M. E. Anderson, J. R. Setter, P. D.
Senter, Nat. Biotechnol. 2015, 33, 733.
[21]
[
[
[
22]
23]
24]
M.-A. Kasper, M. Glanz, A. Stengl, M. Penkert, S. Klenk, T. Sauer,
D. Schumacher, J. Helma, E. Krause, M. C. Cardoso, H. Leonhardt,
C. P. R. Hackenberger, Angew. Chem. Int. Ed., Manuscript
submitted.
S. O. Doronina, B. A. Mendelsohn, T. D. Bovee, C. G. Cerveny, S.
C. Alley, D. L. Meyer, E. Oflazoglu, B. E. Toki, R. J. Sanderson, R.
F. Zabinski, A. F. Wahl, P. D. Senter, Bioconjugate Chem. 2006, 17,
114-124.
a) I. Rillat, M. Perez, L. Goetsch, M. Broussas, C. Beau-Larvor, J.-
F. Haeuw, Vol. WO2015162293, WO2015162293 (A1) ed., 2015; b)
L. Liang, S.-W. Lin, W. Dai, J.-K. Lu, T.-Y. Yang, Y. Xiang, Y. Zhang,
R.-T. Li, Q. Zhang, J. Control. Release 2012, 160, 618-629.
A. Stengl, D. Hörl, H. Leonhardt, J. Helma, SLAS Discov. 2017, 22,
309-315.
A. B. Waight, K. Bargsten, S. Doronina, M. O. Steinmetz, D.
Sussman, A. E. Prota, PLoS One 2016, 11, e0160890.
a) M. R. J. Vallée, P. Majkut, I. Wilkening, C. Weise, G. Müller, C.
P. R. Hackenberger, Org. Lett. 2011, 13, 5440-5443; b) K. D.
Siebertz, C. P. R. Hackenberger, Chem. Commun. 2018, 54, 763-
Acknowledgements
We thank K. K. Hassanin for excellent technical assistance. This
work was supported by grants from the Deutsche
Forschungsgemeinschaft (DFG) (SPP1623) to C.P.R.H. and (HA
4468/9-1), (LE 721/13-2) and (SFB1243/A01) to H.L., the Einstein
Foundation Berlin (Leibniz-Humboldt Professorship), the
Boehringer-Ingelheim Foundation (Plus 3 award) and the Fonds
der Chemischen Industrie to C.P.R.H, by the Leibniz Association
with the Leibniz Wettbewerb to C.P.R.H and H.L., by the German
Federal Ministry for Economic Affairs and Energy and the
European Social Fund with grants to D.S. and J.H. (EXIST FT I)
and by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy with grants to D.S., J.H., H.L. and
[25]
[26]
[27]
766.
[28]
29]
S. M. Ansell, Blood 2014, 124, 3197-3200.
[
C. Bahou, E. A. Love, S. Leonard, R. J. Spears, A. Maruani, K.
Armour, J. R. Baker, V. Chudasama, Bioconjugate Chem. 2019.
T. Kantner, A. G. Watts, Bioconjugate Chem. 2016, 27, 2400-2406.
C. Wei, G. Zhang, T. Clark, F. Barletta, L. N. Tumey, B. Rago, S.
Hansel, X. Han, Anal. Chem. 2016, 88, 4979-4986.
4
C.P.R.H. (m -Award). A.S. was trained and supported by the
[30]
[31]
graduate school RTG1721 of the DFG.
[32]
L. N. Tumey, M. Charati, T. He, E. Sousa, D. Ma, X. Han, T. Clark,
J. Casavant, F. Loganzo, F. Barletta, J. Lucas, E. I. Graziani,
Bioconjugate Chem. 2014, 25, 1871-1880.
Keywords: ADCs• antibodies • bioconjugation • bioorganic
chemistry • drug delivery
[33]
S. D. Fontaine, R. Reid, L. Robinson, G. W. Ashley, D. V. Santi,
Bioconjugate Chem. 2015, 26, 145-152.
[
34]
35]
N. S. Beckley, K. P. Lazzareschi, H.-W. Chih, V. K. Sharma, H. L.
Flores, Bioconjugate Chem. 2013, 24, 1674-1683.
K. J. Hamblett, P. D. Senter, D. F. Chace, M. M. C. Sun, J. Lenox,
C. G. Cerveny, K. M. Kissler, S. X. Bernhardt, A. K. Kopcha, R. F.
Zabinski, D. L. Meyer, J. A. Francisco, Clin. Cancer Res. 2004, 10,
[
1]
V. Chudasama, A. Maruani, S. Caddick, Nat. Chem. 2016, 8, 114-
19.
S. Mariathasan, M.-W. Tan, Trends Mol. Med. 2017, 23, 135-149.
D. Schumacher, C. P. R. Hackenberger, H. Leonhardt, J. Helma, J.
Clin. Immunol. 2016, 36, 100-107.
1
[
[
[
2]
3]
7063-7070.
[4]
N. Uy, M. Nadeau, M. Stahl, A. M. Zeidan, J. Blood Med. 2018, 9,
67-74.
[5]
[6]
[7]
F. R. Appelbaum, I. D. Bernstein, Blood 2017, 130, 2373-2376.
P. Agarwal, C. R. Bertozzi, Bioconjugate Chem. 2015, 26, 176-192.
a) B.-Q. Shen, K. Xu, L. Liu, H. Raab, S. Bhakta, M. Kenrick, K. L.
Parsons-Reponte, J. Tien, S.-F. Yu, E. Mai, D. Li, J. Tibbitts, J.
Baudys, O. M. Saad, S. J. Scales, P. J. McDonald, P. E. Hass, C.
This article is protected by copyright. All rights reserved.