Polyphenol Glucosylating Activity in Grapes
J. Agric. Food Chem., Vol. 52, No. 11, 2004 3471
these alterations take the form of the synthesis of specific
chemical compounds. Grapes are capable of synthesizing many
distinct polyphenolic glucosides, including piceid, flavonol
glucosides, and anthocyanins. Each of these compounds pre-
sumably has a function in the plant. Anthocyanins attract animals
to distribute the seeds of mature red fruit (33). It is important
that biosynthesis of these pigments be controlled developmen-
tally, so that pigment accumulation does not begin until the seeds
are mature and ready to be dispersed. Flavonol glucosides have
been shown to be synthesized in the dermal tissues of many
plant genera in response to UV light; the flavonols absorb
strongly in the UV wavelengths, protecting underlying tissues
from UV-induced damage (34, 35). It is unclear why grape cells
accumulate piceid, although it is more water soluble than
resveratrol and the glucosylation prevents photochemical isomer-
ization of resveratrol moiety. Possibly a better reason to
accumulate the glucoside is that the glucosylation protects
resveratrol from oxidation by fungal tyrosinase (36). Assuming
that these glucosides have specific roles for the plant at specific
developmental stages or environmental conditions, it is important
for the plant to stringently regulate the glucosylation of
polyphenolic compounds. Having several specific glucosyl-
transferases that are responsive to different environmental cues
allows for the fine-tuning of the chemical compounds produced
by the plant to best suit its growing conditions.
(9) Leckband, G.; Lorz, H. Transformation and expression of a
stilbene synthase gene of Vitis Vinifera L. in barley and wheat
for increased fungal resistance. Theor. Appl. Genet. 1998, 96,
1
004-1012.
(
10) Frankel, E. N.; Waterhouse, A. L.; Teissedre, P. L. Principal
phenolic phytochemicals in selected California wines and their
antioxidant activity in inhibiting oxidation of human low-density
lipoproteins. J. Sci. Food Agric. 1995, 43, 890-894.
11) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C.
F.; Beecher, C. W. W.; Fong, H. H. S.; Farnsworth, N. R.;
Kinghorn, D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Cancer
chemoprotective activity of resveratrol, a natural product derived
from grapes. Science 1997, 275, 218-220.
(
(12) Mattivi, F.; Reniero, F.; Korhammer, S. Isolation, characteriza-
tion, and evolution in red wine vinification of resveratrol
monomers. J. Sci. Food Agric. 1995, 43, 1820-1823.
(
13) Renaud, S..; Delorgeril, M. Wine, alcohol, platelets, and the
French Paradox for coronary heart disease. Lancet 1992, 339,
1
523-1526.
(
14) Hollman, C. H.; van Trijp, J. M. P.; Mengelers, M. J. B.; de
Vries, J. H. M.; Katan, M. B. Bioavailability of the dietary
antioxidant flavonol quercetin in man. Cancer Lett. 1997, 114,
1
39-140.
(
15) Langcake, P.; Cornford, C. A.; Pryce, R. J. Identification of
pterostilbene as a phytoalexin from Vitis Vinifera leaves. Phy-
tochemistry 1979, 18, 1025-1027.
16) Waffo-Teguo, P.; Decendit, A.; Krisa, S.; Deffieux, G.; Ver-
cauteren, J.; Merillon, J.-M. The accumulation of stilbene
glycosides in Vitis Vinifera cell suspension cultures. J. Nat. Prod.
(
We have shown, for the first time, that there is a glucosyltrans-
ferase activity toward resveratrol in grape cells. We have charac-
terized this activity and found it to be similar to other phenolic
glucosyltransferases, but we suggest that it is a distinct enzyme.
1
996, 59, 1189-1191.
(
17) Waffo-Teguo, P.; Lee, D.; Cuendet, M.; Merillon, J.-M.; Pezzuto,
J. M.; Kinghorn, A. D. Two new stilbene dimmer glucosides
from grape (Vitis Vinifera) cell cultures. J. Nat. Prod. 2001, 64,
ACKNOWLEDGMENT
1
36-138.
We thank Dr. Roger Boulton for the use of the HPLC and John
Thorngate for the maintenance of the machinery. Thanks also
to Doug Adams, Kendra Furbee, and James Harbertson for
analysis of the manuscript.
(18) Vitrac, X.; Krisa, S.; Decendit, A.; Vercauteren, J.; Nuhrich, A.;
Monti, J. P.; Deffieux, G.; Merillon, J. M. Carbon-14 biolabeling
of wine polyphenols in Vitis Vinifera cell suspension cultures.
J. Biotechnol. 2002, 95, 49-56.
(19) Gambourg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements
of suspension cultures of soybean root cells. Exp. Cell Res. 1968,
LITERATURE CITED
5
0, 151-156.
(
(
(
1) Langcake, P.; Pryce, R. J. The production of resveratrol by Vitis
Vinifera and other Members of the Vitaceae as a response to
infection or injury. Physiol. Plant Pathol. 1976, 9, 87-94.
2) Fritzmeier, K. H.; Kindl, H. Coordinate induction by UV light
of stilbene synthase, phenylalanine ammonia-lyase and cinnamate
(
20) Murashige, T.; Skoog, F. A revised medium for rapid growth
and bioassays with tobacco tissue cultures. Physiol. Plant. 1962,
1
5, 473-497.
(
21) Morel, G. Le probl e` me de la transformation tumorale chez les
v e` g e` taux. Physiol. V e` g. 1970, 8, 189-191.
4
-hydroxylase in leaves of Vitaceae. Planta 1981, 151, 48-52.
(
22) Bradford M. M. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
23) Donovan, J.; Waterhouse, A. L..; Meyer, A. S. Phenolic
composition and antioxidant activity of prunes and prune juice
3) Krisa, S.; Larronde, F.; Budzinski, H.; Decendit, A.; Deffieux,
G.; Merillon, J.-M. Stilbene production by Vitis Vinifera cell
suspension cultures: Methyl jasmonate induction and 13C bio-
labeling. J. Nat. Prod. 1999, 62, 1688-1690.
(
(
(
(
4) Larronde, F.; Gaudillere, J. P.; Krisa, S.; Decendit, A.; Deffieux,
G.; Merillon, J. M. Airborne methyl jasmonate induces stilbene
accumulation in the leaves and berries of grapevine plants. Am.
J. Enol. Vitic. 2003, 54, 63-66.
(Prunus domestica). J. Agric. Food Chem. 1998, 46, 1247-1252.
24) Lister, C. E.; Lancaster, J. E.; Sutton, K. H.; Walker, J. R. L.
Aglycone and glycoside specificity of apple skin flavonoid
glucosyltransferase. J. Sci. Food Agric. 1997, 75, 378-382.
25) Ford, C. M.; Boss, P. K.; Hoj, P. B. Cloning and characterization
of Vitis Vinifera UDP-glucose: flavonoid 3-O-glucosyltrans-
ferase, a homologue of the enzyme encoded by the Maize
Bronze-1 locus that may primarily serve to glucosylate antho-
cyanidins in Vivo. J. Biol. Chem. 1998, 273, 9224-9233.
26) Hirotani, M.; Kuroda, R.; Suzuki, H.; Yoshikawa, T. Cloning
and expression of UDP-glucose: flavonoid 7-O-glucosyltrans-
ferase from hairy root cultures of Scutellaria baicalensis. Planta
2000, 210, 1006-1013.
(
5) Bavaresco, L.; Petegolli, D.; Cantu, E.; Fregoni, M.; Chiusa, G.;
Trevisan, M. Elicitation and accumulation of stilbene phytoal-
exins in grape berries infected with Botrytis cinerea. Vitis 1997,
3
7, 77-83.
(
6) Hoos, G.; Blaich, R. Influence of resveratrol on germination of
conidia and mycelial growth of Botrytis cinerea and Phomopsis
Viticola. J. Phytopath. 1990, 129, 102-110.
(
(
7) Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L. A.; Bessis, R.
Biological activity of resveratrol, a stilbenic compound from
grapevines, against Botrytis cinerea, the causal agent for gray
mold. J. Chem. Ecol. 1997, 23, 1689-1702.
(27) Tanaka, Y.; Yonekura, K.; Fukuchimizutani, M.; Fukui, Y.;
Fujiwara, H.; Ashikari, T.; Kusumi, T. Molecular and biochemi-
cal characterization of three anthocyanin synthetic enzymes from
Gentiana triflora. Plant Cell Physiol. 1996, 35, 711-716.
(
8) Dercks, W.; Creasy, L. L. The significance of stilbene phytoal-
exins in the Plasmopara Viticola-grapevine interaction. Physiol.
Mol. Plant Biol. 1989, 34, 189-202.