Article
Biochemistry, Vol. 49, No. 25, 2010 5187
3
4
5
6
7
. Hebda, C. A., and Nowak, T. (1982) The Purification, Characteriza-
27. Noce, P. S., and Utter, M. F. (1975) Decarboxylation of Oxalacetate
to Pyruvate by Purified Avian Liver Phosphoenolpyruvate Carbox-
ykinase. J. Biol. Chem. 250, 9099–9105.
28. Holyoak, T., and Nowak, T. (2004) pH Dependence of the Reaction
Catalyzed by Avian Mitochondrial Phosphoenolpyruvate Carboxy-
kinase. Biochemistry 43, 7054–7065.
29. Dharmarajan, L., Case, C. L., Dunten, P., and Mukhopadhyay, B.
(2008) Tyr235 of Human Cytosolic Phosphoenolpyruvate Carboxy-
kinase Influences Catalysis through an Anion-Quadrupole Interac-
tion with Phosphoenolpyruvate Carboxylate. FEBS J. 275, 5810–
5819.
30. Jabalquinto, A. M., Laivenieks, M., Zeikus, J. G., and Cardemil, E.
(1999) Characterization of the Oxaloacetate Decarboxylase and
Pyruvate Kinase-Like Activities of Saccharomyces cerevisiae and
Anaerobiospirillum succiniciproducens Phosphoenolpyruvate Carbox-
ykinases. J. Protein Chem. 18, 659–664.
tion, and Activation of Phosphoenolpyruvate Carboxykinase from
Chicken Liver Mitochondria. J. Biol. Chem. 257, 5503–5514.
. Hebda, C. A., and Nowak, T. (1982) Phosphoenolpyruvate Carbox-
2þ
2þ
ykinase. Mn and Mn Substrate Complexes. J. Biol. Chem. 257,
515–5522.
5
. Yang, J., Kalhan, S. C., and Hanson, R. W. (2009) What Is the
Metabolic Role of Phosphoenolpyruvate Carboxykinase? J. Biol.
Chem. 284, 27025–27029.
. Carlson, G. M., and Holyoak, T. (2009) Structural Insights into the
Mechanism of Phosphoenolpyruvate Carboxykinase Catalysis. J. Biol.
Chem. 284, 27037–27041.
. Stiffin, R.-M., Sullivan, S. M., Carlson, G. M., and Holyoak, T.
(2008) Differential Inhibition of Cytosolic Pepck by Substrate Ana-
logues. Kinetic and Structural Characterization of Inhibitor Recogni-
tion. Biochemistry 47, 2099–2109.
8
. Sullivan, S. M., and Holyoak, T. (2007) Structures of Rat Cytosolic
Pepck: Insight into the Mechanism of Phosphorylation and Decar-
boxylation of Oxaloacetic Acid. Biochemistry 46, 10078–10088.
. Sullivan, S. M., and Holyoak, T. (2008) Enzymes with Lid-Gated
Active Sites Must Operate by an Induced Fit Mechanism Instead of
Conformational Selection. Proc. Natl. Acad. Sci. U.S.A. 105, 13829–
31. Dunten, P., Belunis, C., Crowther, R., Hollfelder, K., Kammlott, U.,
Levin, W., Michel, H., Ramsey, G. B., Swain, A., Weber, D., and
Wertheimer, S. J. (2002) Crystal Structure of Human Cytosolic
Phosphoenolpyruvate Carboxykinase Reveals a New Gtp-Binding
Site. J. Mol. Biol. 316, 257–264.
32. Xiang, J., Jung, J. Y., and Sampson, N. S. (2004) Entropy Effects on
Protein Hinges: The Reaction Catalyzed by Triosephosphate Isomer-
ase. Biochemistry 43, 11436–11445.
33. Taylor, J. C., and Markham, G. D. (2003) Conformational Dynamics
of the Active Site Loop of S-Adenosylmethionine Synthetase Illumi-
nated by Site-Directed Spin Labeling. Arch. Biochem. Biophys. 415,
164–171.
34. Hedstrom, L., Szilagyi, L., and Rutter, W. J. (1992) Converting
Trypsin to Chymotrypsin: The Role of Surface Loops. Science 255,
1249–1253.
35. Johnson, T. A., Qiu, J., Plaut, A. G., and Holyoak, T. (2009) Active-
Site Gating Regulates Substrate Selectivity in a Chymotrypsin-Like
Serine Protease the Structure of Haemophilus influenzae Immunoglo-
bulin A1 Protease. J. Mol. Biol. 389, 559–574.
36. Perona, J. J., and Craik, C. S. (1997) Evolutionary Divergence of
Substrate Specificity within the Chymotrypsin-Like Serine Protease
Fold. J. Biol. Chem. 272, 29987–29990.
37. Watt, E. D., Shimada, H., Kovrigin, E. L., and Loria, J. P. (2007) The
Mechanism of Rate-Limiting Motions in Enzyme Function. Proc.
Natl. Acad. Sci. U.S.A. 104, 11981–11986.
38. Sampson, N. S., and Knowles, J. R. (1992) Segmental Motion in
Catalysis: Investigation of a Hydrogen Bond Critical for Loop
Closure in the Reaction of Triosephosphate Isomerase. Biochemistry
31, 8488–8494.
9
1
3834.
1
1
0. Alber, T., Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D.,
Rivers, P. S., and Wilson, I. A. (1981) On the Three-Dimensional
Structure and Catalytic Mechanism of Triose Phosphate Isomerase.
Philos. Trans. R. Soc. London, Ser. B 293, 159–171.
1. Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson,
C. I., Wilson, I. A., Corran, P. H., Furth, A. J., Milman, J. D., Offord,
R. E., Priddle, J. D., and Waley, S. G. (1975) Structure of Chicken
Muscle Triose Phosphate Isomerase Determined Crystallographically
at 2.5 Angstrom Resolution Using Amino Acid Sequence Data.
Nature 255, 609–614.
1
2. Lolis, E., and Petsko, G. A. (1990) Crystallographic Analysis of the
Complex between Triosephosphate Isomerase and 2-Phosphoglyco-
˚
late at 2.5-A Resolution: Implications for Catalysis. Biochemistry 29,
6
619–6625.
1
3. Joseph, D., Petsko, G. A., and Karplus, M. (1990) Anatomy of a
Conformational Change: Hinged “Lid” Motion of the Triosepho-
sphate Isomerase Loop. Science 249, 1425–1428.
4. Fersht, A. R. (1974) Catalysis, Binding and Enzyme-Substrate Com-
plementarity. Proc. R. Soc. London, Ser. B 187, 397–407.
5. Williams, J. C., and McDermott, A. E. (1995) Dynamics of the
Flexible Loop of Triosephosphate Isomerase: The Loop Motion Is
Not Ligand Gated. Biochemistry 34, 8309–8319.
1
1
1
6. Kempf, J. G., Jung, J. Y., Ragain, C., Sampson, N. S., and Loria,
J. P. (2007) Dynamic Requirements for a Functional Protein Hinge.
J. Mol. Biol. 368, 131–149.
7. Griffith, O. W., and Weinstein, C. L. (1987) β-Sulfopyruvate. Meth-
ods Enzymol. 143, 221–223.
8. Colombo, G., Carlson, G. M., and Lardy, H. A. (1978) Phosphoe-
nolpyruvate Carboxykinase (Guanosine Triphosphate) from Rat
Liver Cytosol. Separation of Homogeneous Forms of the Enzyme
with High and Low Activity by Chromatography on Agarose-Hex-
ane-Guanosine Triphosphate. Biochemistry 17, 5321–5329.
9. Otwinowski, Z., and Minor, W. (1997) Processing of X-Ray Diffrac-
tion Data Collected in Oscillation Mode. Methods Enzymol. 276,
39. Sampson, N. S., and Knowles, J. R. (1992) Segmental Movement:
Definition of the Structural Requirements for Loop Closure in
Catalysis by Triosephosphate Isomerase. Biochemistry 31, 8482–8487.
40. Pompliano, D. L., Peyman, A., and Knowles, J. R. (1990) Stabiliza-
tion of a Reaction Intermediate as a Catalytic Device: Definition of
the Functional Role of the Flexible Loop in Triosephosphate Iso-
merase. Biochemistry 29, 3186–3194.
41. Fisher, H. F. (1988) A Unifying Model of the Thermodynamics of
Formation of Dehydrogenase-Ligand Complexes. Adv. Enzymol.
Relat. Areas Mol. Biol. 61, 1–46.
1
1
1
42. Jencks, W. P. (1975) Binding Energy, Specificity, and Enzymic
Catalysis: The Circe Effect. Adv. Enzymol. Relat. Areas Mol. Biol.
43, 219–410.
3
07–326.
2
2
2
2
0. Vagin, A., and Teplyakov, A. (1997) Molrep: An Automated Program
for Molecular Replacement. J. Appl. Crystallogr. 30, 1022–1025.
1. Bailey, S. (1994) The Ccp4 Suite: Programs for Protein Crystal-
lography. Acta Crystallogr. D50, 760–763.
2. Emsley, P., and Cowtan, K. (2004) Coot: Model-Building Tools for
Molecular Graphics. Acta Crystallogr. D60, 2126–2132.
3. Painter, J., and Merritt, E. A. (2005) A Molecular Viewer for the
Analysis of Tls Rigid-Body Motion in Macromolecules. Acta Crystal-
logr. D61, 465–471.
43. Swint-Kruse, L., and Fisher, H. F. (2008) Enzymatic Reaction
Sequences as Coupled Multiple Traces on a Multidimensional Land-
scape. Trends Biochem. Sci. 33, 104–112.
44. Benkovic, S. J., Hammes, G. G., and Hammes-Schiffer, S. (2008) Free-
Energy Landscape of Enzyme Catalysis. Biochemistry 47, 3317–3321.
45. Rozovsky, S., Jogl, G., Tong, L., and McDermott, A. E. (2001)
Solution-State NMR Investigations of Triosephosphate Isomerase
Active Site Loop Motion: Ligand Release in Relation to Active Site
Loop Dynamics. J. Mol. Biol. 310, 271–280.
2
2
2
4. Painter, J., and Merritt, E. A. (2006) Optimal Description of a Protein
Structure in Terms of Multiple Groups Undergoing Tls Motion. Acta
Crystallogr. D62, 439–450.
5. Painter, J., and Merritt, E. A. (2006) Tlsmd Web Server for the
Generation of Multi-Group Tls Models. J. Appl. Crystallogr. 39, 109–
46. Konopka, J. M., Lardy, H. A., and Frey, P. A. (1986) Stereochemical
Course of Thiophosphoryl Transfer Catalyzed by Cytosolic Phos-
phoenolpyruvate Carboxykinase. Biochemistry 25, 5571–5575.
47. Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K.,
Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A., and Noble, M.
(2004) Developments in the Ccp4Molecular-Graphics Project. Acta
Crystallogr. D60, 2288–2294.
1
11.
6. Ash, D. E., Emig, F. A., Chowdhury, S. A., Satoh, Y., and Schramm,
V. L. (1990) Mammalian and Avian Liver Phosphoenolpyruvate
Carboxykinase: Alternate Substrates and Inhibition by Analogs of
Oxaloacetate. J. Biol. Chem. 265, 7377–7384.
48. Cotelesage, J. J. H., Puttick, J., Goldie, H., Rajabi, B., Novakovski,
B., and Delbaere, L. T. J. (2007) How Does an Enzyme Recognize
2
CO ? Int. J. Biochem. Cell Biol. 39, 1204–1210.