Journal of the American Chemical Society
Page 10 of 12
cleaved from resin and analyzed by HPLC. Spectra of the
Synthesis, characterization, kinetic studies, and spectroscopy
data (PDF)
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
crude cleaved products indicate that relatively pure peptide
was obtained after iterative synthesis on solid phase. The same
peptide synthesized using standard coupling agent HBTU is
provided as control (Figure 10b). Despite the inconveniences,
the performance of the catalyst for solid phase peptide
synthesis (SPPS) is highly encouraging.
AUTHOR INFORMATION
Corresponding Author
*arora@nyu.edu
ACKNOWLEDGMENT
CONCLUSION
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
The authors thank the NSF (CHE-1807670) for financial
support of this work.
We describe efforts to develop an organocatalyst for amide
bond formation from commercially available Fmoc amino
acids featuring standard side chain protecting groups. The
catalyst design builds on urea-based hydrogen bonding
scaffolds and the concept of covalent catalysis. The proposed
catalytic cycle utilizes a reduction–oxidation condensation
procedure to activate the carboxylic acid as a selenoester. The
diselenide required for this transformation is a component of
the catalyst. The selenoester linkage reversibly connects the
amino acid to the organocatalyst which catalyzes amide bond
formation.
The studies described here provide a lead towards catalytic
peptide synthesis. We utilized an iterative design approach to
develop a macrocyclic diselenide catalyst that yields near
quantitative conversion of carboxylic acids and amines to their
amide products under optimized conditions. The catalyst is
active on a diverse range of amino acid substrates and shows
promise for solid phase peptide synthesis. Insignificant
epimerization of chiral amino acids was observed in the
catalyzed reaction. The result with oligomer synthesis is
particularly rewarding because hydrogen bonding catalysts
may not be expected to be efficient in the presence of multiple
amide bonds.
REFERENCES
(1) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
(2) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010,
4
6, 1813.
3) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
(4) Georgiou, I.; Ilyashenko, G.; Whiting, A. Acc. Chem. Res. 2009, 42, 756.
(
(
(
(
5) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem. Int. Ed. 2008, 47,
2876.
6) Noda, H.; Furutachi, M.; Asada, Y.; Shibasaki, M.; Kumagai, N. Nat Chem
2017, 9, 571.
7) Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48,
6
66.
(8) Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem. Eur. J. 2012, 18, 3822.
(9) Han, C.; Lee, J. P.; Lobkovsky, E.; Porco, J. A. J. Am. Chem. Soc. 2005, 127,
1
0039.
(
(
10) Gnanaprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011, 133, 1682.
11) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453.
(12) Muramatsu, W.; Hattori, T.; Yamamoto, H. J. Am. Chem. Soc. 2019, 141,
2288.
1
(
(
13) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939.
14) Saxon, E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2, 2141.
(15) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796.
(16) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798.
(
(
17) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027.
18) Schwieter, K. E.; Johnston, J. N. ACS Catalysis 2015, 5, 6559.
(19) Schwieter, K. E.; Shen, B.; Shackleford, J. P.; Leighty, M. W.; Johnston, J. N.
Org. Lett. 2014, 16, 4714.
(20) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew Chem Int Ed Engl 2006, 45,
The overall aim of this work is to develop organocatalysts
that can replace standard coupling agents in commercial
synthesizers, and limit waste in peptide synthesis. This goal
will require further optimization. Specifically, we need to limit
the dependence on a drying agent and explore phosphorus
1248.
(
(
21) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
22) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116,
1
2029.
(23) Krause, T.; Baader, S.; Erb, B.; Gooßen, L. J. Nature Communications 2016,
7, 11732.
(
24) Sabatini, M. T.; Boulton, L. T.; Sheppard, T. D. Science Advances 2017, 3,
e1701028.
(III) reagents that are less prone to oxidation. We are
continuing to evaluate other phosphine derivatives, to
overcome the limitations imposed by tributylphosphine. Our
initial investigations utilized a catalytic cycle that requires
oxidation of stoichiometric amounts of a phosphine. In
continuing studies, we are exploring recycling of the
phosphine oxide product so as to achieve a catalytic cycle that
includes catalytic amounts of phosphines. Silanes have
recently been used as reagent for reducing phosphine oxides
(
25) Liu, Z.; Noda, H.; Shibasaki, M.; Kumagai, N. Org. Lett. 2018, 20, 612.
(26) Endo, T.; Ikenaga, S.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1970, 43, 2632.
(
(
(
27) Wu, H.; Handoko; Raj, M.; Arora, P. S. Org. Lett. 2017, 19, 5122.
28) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
29) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.
(30) Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59, 3259.
(31) Blain, M.; Yau, H.; Jean-Gérard, L.; Auvergne, R.; Benazet, D.; Schreiner, P.
R.; Caillol, S.; Andrioletti, B. ChemSusChem 2016, 9, 2269.
(
32) Alemán, J.; Parra, A.; Jiang, H.; Jørgensen, K. A. Chem. Eur. J. 2011, 17,
6890.
56
(33) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130,
to phosphines in catalytic Mitsunobu reactions. The results
14416.
of these ongoing investigations will be reported in due course.
(
(
34) Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitatebus, P. J.; Miller, S.
J. J. Am. Chem. Soc. 1999, 121, 11638.
35) Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick,
J. L. J. Am. Chem. Soc. 2006, 128, 4556.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publications website.
(36) Ema, T.; Tanida, D.; Matsukawa, T.; Sakai, T. Chem. Commun. 2008, 957.
37) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50, 6012.
(
ACS Paragon Plus Environment