C O M M U N I C A T I O N S
Scheme 1. Synthesis of Anthracenedicarboximides
both stable electron transport in air and low Ioff. Similarly to other
rylene TFTs, the present devices are sensitive to the combined action
of humidity and sunlight. However, the performance of devices
stored in air with exclusion of light remains stable for at least 4
months after fabrication (Figure S5). Finally, ADIR core cyanation
strongly enhances solubility. Films of ADI8-CN2 can be spin-cast
on a solution-processed 100 nm-thick CPB gate dielectric5a afford-
ing µe ≈ 0.001 cm2/(V s); Ion/Ioff > 105; Vth ≈ 0 V.
Table 1. Electrochemicala and OTFTb Data for ADI Derivatives
E(1)
(V)
µ
Vth
S
compound
(cm2/(V s))
I
on/Ioff
(V)
(V/dec)
In summary, we report a new n-type TFT semiconductor family
based on anthracenedicarboximides. ADI8-CN2-based TFTs ex-
hibit good electron mobility (µe up to 0.02 cm2/(V s)), very high
Ion/Ioff > 107 in ambient conditions as a consequence of balanced
electron affinity. Studies are underway to enhance µe by variation
of N-substituents. Note that within the core-cyanated perylene
family, optimized µe varies by >10× with proper N-substitution.6
anthracene
ADI8
ADICy
ADI1Ph
ADI8-CN2
-1.92
-1.17
-1.17
-1.12
-0.33
0.02c
0.02
0.01
0.01
0.03 (vac.)
0.02 (air)
∼104
-10
+45
+35
+45
+10
+15
4 × 107
5 × 106
2 × 107
6 × 106
2 × 107
2.0
2.9
4.1
1.9
1.9
a In CH2Cl2 (vs SCE) solution (0.1 M Bu4NPF6 electrolyte), Pt electrode.
Scan rate: 100 mV/s. Fc/Fc+ (0.52 V vs SCE) internal reference. b Film
growth temperature is 90 °C. c Single crystal (ref 13).
Acknowledgment. We thank the Northwestern NSF-MRSEC
(Grant DMR-0520513) at Northwestern University and Polyera
Corp. for support of this research.
Supporting Information Available: Synthesis of ADIs, device
fabrication details, UV-vis/electrochemical/FET data. This material
References
(1) (a) Facchetti, A. Mater. Today 2007, 10, 28. (b) Murphy, A. R.; Frechet,
J. M. J. Chem. ReV. 2007, 107, 1066. (c) Locklin, J.; Roberts, M.;
Mannsfeld, S.; Bao, Z. Polym. ReV. 2006, 46, 79. (d) Anthopoulos, T.
D.; Setayesh, S.; Smits, E.; Colle, M.; Cantatore, E.; de Boer, B.; Blom,
P. W. M.; de Leeuw, D. M. AdV. Mat. 2006, 18, 1900. (e) Chabinyc, M.;
Loo, Y. L. J. Macromol. Sci. Polym. ReV. 2006, 46, 1. (f) Muccini, M
Nat. Mater. 2006, 5, 605.
(2) (a) DeLongchamp, D. M.; Kline, R. J.; Lin, E. K.; Fischer, D. A.; Richter,
L. J.; Lucas, L. A.; Heeney, M.; McCulloch, I.; Northrup, J. E. AdV. Mater.
2007, 19, 833. (b) Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra,
A. K.; Muellen, K. J. Am. Chem. Soc. 2007, 129, 3472. (c) Huang, C.;
West, J. E.; Katz, H. E. AdV. Funct. Mater. 2007, 17, 142. (d) Anthony,
J. E. Chem. ReV. 2006, 106, 5028. (e) Kastler, M.; Laquai, F.; Mullen,
K.; Wegner, G. Appl. Phys. Lett. 2006, 89, 252103/1. (f) Wurthner, F.;
Schmidt, R. Chem. Phys. Chem. 2006, 7, 793. (g) Naraso; N, J.-I.; Kumaki,
D.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2006, 128, 9598. (h)
Chabinyc, M. L.; Salleo, A.; Wu, Y.; Liu, P.; Ong, B. S.; Heeney, M.;
McCulloch, I. J. Am. Chem. Soc. 2004, 126, 13928.
Figure 2. I-V transfer plots for vapor-deposited ADI8-CN2 films in
vacuum (A) and air (B) on HMDS-treated Si-SiO2 substrates and as
solution-cast films on a solution-processed CPB insulator in air (C). VSD
)
100 V.
Scheme 2. Synthesis of the Core-Cyanated ADI8-CN2
(3) (a) Kuo, M. Y.; Chen, H. Y.; Cao, I. Chem.sEur. J. 2007, 13, 4750. (b)
Chen, H. Z.; Ling, M. M.; Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Chem.
Mater. 2007, 19, 816. (c) Tang, Q.; Li, H.; Liu, Y.; Hu, W J. Am. Chem.
Soc. 2006, 128, 14634. (d) Anthopoulos, T. D.; Kooistra, F. B.;
Wondergem, H. J.; Kronholm, D.; Hummelen, J. C.; de Leeuw, D. M.
AdV. Mat. 2006, 18, 1679. (e) Haddock, J. N.; Zhang, X.; Domercq, B.;
Kippelen, B. Org. Electron. 2005, 6, 182. (f) Yoon, M.-H.; DiBenedetto,
S.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348. (g)
Jones, B. A.; Ahrens, M. J.; Yoon, M. H.; Facchetti, A.; Marks, T. J.;
Wasielewski, M. R. Angew. Chem. 2004, 43, 6363. (h) Chesterfield, R.
J.; McKeen. J. C.; Newman, C. R.; Ewbank, P. C.; da Silva Filho, D. A.;
Bredas, J. L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D. J. Phys. Chem.
B 2004, 108, 19281.
(4) (a) Reese, C.; Bao, Z. Mater. Today 2007, 10, 20. (b) Briseno, A. L.;
Mannsfeld, S. C. B.; Ling, M. M.; Liu, S.; Tseng, R. J.; Reese, C.; Roberts,
M. E.; Yang, Y.; Wudl, F.; Bao, Z. Nature 2006, 444, 913. (c) Panzer,
M. J.; Frisbie, C. D. Appl. Phy. Lett. 2006, 88, 203504/1 (d) Sundar, V.
C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.;
Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644.
(5) (a) Yoon, M. H.; Kim, C.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc.
2006, 128, 12851. (b) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C.-
W.; Ho, P. K.-H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
(6) Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. J. Am. Chem.
Soc., in press.
in contrast to other acenes,4b anthracene-based FETs perform poorly
unless single crystals are employed for p-channel semiconductor.12
Therefore, compared to anthracene, introduction of the diimide
groups and N-hydrocarbon functionalization strongly affects frontier
MO energies, enabling n-channel conductivity and film self-
organization on the insulator for efficient charge transport.
We next synthesized 9,10-core-cyanated ADIs, starting with
ADI8-CN2. Since attempts to brominate ADI8 were unsuccessful,
we developed a synthesis starting from tetramethylbenzene (Scheme
2). Interestingly, bromination of the dibromotetramethylbenzene
does not proceed to the tetrakis(dibromomethyl) derivative (5),
probably because of steric hindrance. Cycloaddition of 4 with 2a
affords core 6, which is aromatized with Br2/Et3N to 7, and finally
dicyanated to afford ADI8-CN2 in 25% overall yield. OTFTs based
on ADI8-CN2 operate in air (vacuum) and exhibit µe ) 0.02 (0.03)
cm2/(V s); Ion/Ioff > 107 (∼107); Vth ≈ +15 (+10 V) (Figure 2).
Note the very high Ion/Ioff ratios and positive Vth for this system, in
agreement with the enhanced electron affinity. I-V hysteresis is
negligible (very small) for the devices measured in vacuum
(ambient) (Figure S3). From cyclic voltammetry, ER1 of ADI8-
CN2 is -0.33 V (Figure S4), in agreement with theoretical
expectations10 and the ambient TFT stability characteristics.
Consequently, these results provide additional evidence that a redox
window between ER1 ) -0.4 and 0.0 V is essential to achieve
(7) Ling, M.-M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z.
AdV. Mater. 2007, 19, 1123.
(8) Rak, S. F.; Jozefiak, T. H.; Miller, L. L. J. Org. Chem. 1990, 55, 4794.
(9) Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Chem. Mater. 2003, 15,
2684.
(10) From DFT computations (B3LYP, 6-31G**). ADIR: ELUMO ) -2.96
eV, EHOMO ) -6.38. ADIR-CN2: ELUMO ) -3.26 eV, EHOMO ) -6.98
(R ) Me).
(11) de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F.
Synth. Met. 1997, 87, 53.
(12) (a) Kepler, R. G. Phys. ReV. 1960, 119, 1226. (b) LeBlanc, O. H. J. Chem.
Phys. 1960, 33, 626.
(13) Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. W. Appl.
Phys. Lett. 2004, 84, 5383.
JA073306F
9
J. AM. CHEM. SOC. VOL. 129, NO. 44, 2007 13363